Braga et al. Supplementary Table

Selected publications using corals, coralline algae and vermetids in fossil Quaternary reefs to reconstruct local relative sea-level or to interpret palaeodepth of deposits. All taxa names and growth forms are verbatim quotations of the original publication. No corrections of original taxonomic nomenclature have been attempted. Genus names in species binomials are only spelled out in their first appearance. CCA: crustose coralline algae.

Authors	Locality Age	Inferred palaeodepth	Palaeoenvironment	Coralgal assemblages	Other fossils	Source of data for palaeodepth interpretation
Mesolella, 1967	Barbados Pleistocene	Mean low tide for top 3)	 Deeper fore-reef slope Mid fore-reef slope Upper fore-reef and reef crest Rear coral-head zone 	 Coral-head zone of Montastrea annularis, Siderastrea siderea, S. radians, Diploria strigosa, D. labyrinthiformis, minor Porites astreoides, Agaricia agaricites, Favia fragum, Meandrina meandrites, M. brazilensis, Colpophyllia natans, Montastrea cavernosa, Porites porites, Eusmilia fastigata and Madracis Acropora cervicornis, M. annularis, Diploria sp., Siderastrea sp. Acropora palmata M. annularis, A. cervicornis, Diploria sp., Siderastrea sp., P. porites, A. agaricites, F. fragum, M. meandrites, P. astreoides, C. natans, M. cavernosa, E. fastigata, Madracis sp. and Oculina, Millenora 	3) Thick CCA 4) CCA	Goreau, 1959; Ginsburg, 1956; Shinn, 1963; Newell & Rigby, 1957; Storr, 1964; Stoddart, 1962
Lighty et al. 1978	SE Florida shelf Holocene	Shallow water	Back-reef, reef crest and fore reef	 Back-reef coral head Back-reef A. cervicornis A. palmata fore-reef coral head 		Ginsburg, 1956; Shinn, 1963
Fairbanks & Mathews, 1978	Barbados MIS 7 to MIS 5a	<5 m	Reef-crest	A. palmata		No reference
Lighty <i>et al.</i> , 1982	Western Atlantic Holocene and modern	Optimum 1 to 5 m	Reef-crest framework	A. palmata		Based on a long list of ecological papers

Western Atlantic-Caribbean province

Edwards <i>et al.</i> , 1987b	1) Barbados 2) Vanuatu, Huon Peninsula, Hispaniola Holocene and LIG	0 to 2 m	Reef crest	A. palmata		well known fact
Fairbanks, 1989	Barbados Deglacial and early Holocene	< 5 m	Reef-crest	A. palmate, P. astreoides. Also A. cervicornis, M. annularis		Lighty <i>et al.</i> , 1982; Fairbanks & Matthews, 1978
Bard et al., 1990a	Barbados Deglacial and early Holocene	±2.5 m for <i>A</i> . <i>palmata</i>	Reef-crest	A. palmata and Porites		Fairbanks, 1989
Bard et al., 1990b	Barbados 130 ka	$\pm 2,5$ m for <i>A</i> . <i>palmata</i>	Reef-crest	A. palmata		Fairbanks, 1989
Chen <i>et al.</i> , 1991	1) San Salvador 2) Great Inagua MIS 5e	1) 3 to 4 m 2) planed reef tops (4 m)	 1) Shelf patch reef crest 2) Patch reefs 	 A. palmata, M. annularis, Diploria clivosa; in situ M. annularis, D. strigosa and chunks of A. cervicornis and A. palmata; M. annularis and D. clivosa 		
Martindale, 1992	Barbados Pleistocene and modern	1) 15 to 25 m	1) Exposed environment at mid-depth, lagoon	1) Crusts of uniform composition: surfaces and sides of <i>M. annularis, Diploria</i> sp. and <i>Siderastrea</i> sp.	1) Thin crusts of foliaceous CCA (Mesophyllum, Tenarea, Neogoniolithon, Hydrolithon)	
		2) Shallow, turbulent water	2) High energy crest of the outer barrier reef and on spurs on the inner fringing reef	2) Crusts of mixed composition: <i>A. palmata</i>	2) Thick (> 2 mm) layers of CCA Porolithon, Lithophyllum, or Tenarea. Thin (< 2 mm), crusts of Lithophyllum, Neogoniolithon and Mesophyllum overlie the initial succession and are overlain by very thin (< 1 mm), detached, foliose crusts of Mesophyllum and Lithothamnion	Own observations in modern reef
Gallup et al., 1994	Barbados Last 200 ka interglacials and older terraces	Not specified, assumed previous estimates +/- 3 m?)	Cobble, reef crest, forereef	A. palmata, Sideratrea, Porites		Ku <i>et al.</i> , 1974, Marshall & Thom, 1976; Chen <i>et al.</i> 1991
Ludwig <i>et al.</i> , 1996	Florida Keys and Bermuda MIS 5a	<i>Montastrea</i> grows to about 80 m,	Reef crest of outlier reef	<i>M. annularis</i> (and Holocene <i>A. palmata</i>) in Florida Keys, <i>Oculina</i> and <i>Siderastrea</i> in Bermuda		Shinn et al., 1989

		optimum 3 to 45 m, supposed 3 m.				
Toscano & Lundberg, 1998	S.E. Florida Early Holocene	\leq 4 m based on corals and difference with coeval peat levels	Landward pinnacle and reef crest	A. palmata, M. annularis and C. natans		Jaap, 1984; Shinn, 1980; Lighty <i>et al.</i> , 1982
Toscano & Lundberg, 1999	S.E. Florida MIS5 a to c	3 to 4 m for back- reef, < 2 m for reef crest facies; head corals 0 to 45 m	Shallow fore-reef and back-reef	Head corals <i>M. annularis</i> and <i>C. natans</i> and the branching coral <i>A. palmata</i>		Jaap, 1984; Fairbanks, 1989; Lightly <i>et al.</i> , 1982
Vézina et al., 1999	Grand Cayman Unit A > 400 Unit B 364 Unit C 229 Unit D 131 ky	Unit A to $D < 10$ m; in unit A combination with geomorphology 4 to 9 m	Unit A open shelf with patch reefs; B to D lagoon with patch reefs	Unit A <i>A. palmata</i> Unit B coral heads Unit C <i>A. palmata</i> , <i>A. cervicornis</i> , <i>P. porites</i>		Rigby & Roberts, 1976; Blanchon, 1995; Hunter, 1994
Fruijtier <i>et al.</i> , 2000	Key Largo, Florida MIS 5e	0 to 3 m	Reefs	Diploria sp., Siderastrea sp., Montastrea sp.		Perkins, 1977; also Stanley, 1966
Blanchon & Eisenhauer, 2001	Barbados LIG	4) < 1 m due to <i>Dendropoma;</i> habitat depth range of <i>A. palmata</i> 0 to 6 m south coast, 0 to 2 m west coast; 0 to 5 m in high- energy reef crests with thick intertidal encrusters	 1) Distal reef front 2) Middle reef front 3) Proximal reef front 4) Reef crest 5) Proximal back reef 	 Head-coral framestone: Siderastrea spp, Montastrea spp and Diploria spp, with subordinate Colpophyllia spp, M. cavernosa, Isophyllastrea rigida, Stephanocoenia michilini and P. astreoides Cervicornis framestone: A. cervicornis, M. annularis, Siderastrea spp. Mixed framestone: A. palmata, A. cervicornis, M. annularis Rudstone: A. palmata Branching-coral framestone facies: P. porites, P. astreoides, A. cervicornis, M. annularis, Agaricia sp. and E. fastigiata 	4) CCA, encrusting foraminifera (<i>Homotrema</i> <i>rubrum</i>) and vermetid gastropods, including <i>Dendropoma</i>	Glynn, 1973; Focke, 1978; Laborel, 1986; Jones & Hunter, 1995; Mesolella <i>et</i> <i>al.</i> , 1969, 1970; Blanchon <i>et al.</i> , 1997
Blanchon <i>et al.</i> , 2002	Grand Cayman Holocene	Submerged intertidal notch and erosion of reef crest; 0 to 5 m for <i>A. palmata</i>	Acropora reef crest	A. palmata in rudstone In framestone Siderastrea spp., Diploria spp., stumps of A. palmata, M. annularis, M. cavernosa and Isophyllastrea rigida, fragments of Millepora, Agaricia sp. and A. cervicornis	<i>Porolithon</i> sp., <i>Lithophyllum</i> sp., foraminifera <i>H. rubrum</i> in rudstone	Blanchon & Jones, 1995
Gallup <i>et al.</i> , 2002	Barbados Termination II	Cobbles imply proximity to sea- level	Fringing reef with coral cobbles	<i>A. palmata</i> and head coral, <i>A. palmata</i> and A. <i>cervicornis</i> in other units		
Speed & Cheng, 2004	Barbados LIG	0 to 5 m	Fringe reef	Acropora palmata (A. cervicornis seawards)		Adey (1978)

Blanchon & Perry, 2004	Yucatan Holocene and modern	1) 0 to 2 m 2) 2 to 10 m	1) Reef-crest/flat 2) Reef front	 A. palmata A. palmata, rare Montastrea and also crusts of Millepora sp. up to 2 cm 	 Traces and encrusters including sponge borings (<i>Entobia convoluta</i>), cm- thick CCA (<i>Porolithon</i> sp., <i>Neogoniolithon</i> sp., <i>Lithophyllum</i> sp. and <i>Lithoporella</i> sp.), flattened <i>H. rubrum</i> and vermetids; Boring bivalves and sponges, thin (0.5 to 2 mm) CCA, primarily <i>Porolithon</i> sp., <i>Neogoniolithon</i> sp., <i>Tenarea</i> sp. with vermetids 	Own observations in modern reef
Potter et al., 2004	Barbados MIS 5a and 5c	<i>A. palmata</i> within 5 m	Reef crest	A. palmata, Monastrea sp., Siderastrea sp. and Diploria sp.		Mesolella, 1967
Schellmann & Radtke, 2004	Barbados Pleistocene and Holocene	3) 0 to 5m	 Deeper fore-reef Fore-reed Reef crest Back reef 	 Mixed coral heads of <i>M. annularis, M. cavernosa, Diploria, Siderastrea</i> <i>A. cervicornis</i> <i>A. palmata</i> Head coral and organ-pipe colonies of <i>M. annularis</i> 		Lighty <i>et al.</i> , 1982; Geister, 1983
Peltier & Fairbanks, 2006	Barbados LGM and deglacial	0 to 5m for <i>A</i> . <i>palmata</i> , 0-20 m for <i>M. annularis</i>		A. palmata, M. annularis, P. astreoides, Diploria sp., A. cervicornis		Fairbanks, 1989
Coyne <i>et al.</i> , 2007	Grand Cayman Units A to F; concentrates in D to F (Vézina <i>et</i> <i>al.</i> 1999 for A to D)	Unit D probably < 10 m-deep Unit F intertidal to subtidal		Porites sp., M. annularis, Diploria sp., A. palmata, A. cervicornis and Madracis sp.		Jones & Hunter, 1990; Vézina, 1997; Vézina <i>et al.</i> , 1999
Scholz et al., 2007	Barbados MIS 6.5	Not specified, assume <i>A. palmata</i> indicates sea-level	Reef framework	A. palmata		
Blanchon <i>et al.</i> , 2009	Yucatán MIS 5e	Mean lower water	Reef crest	A. palmata	Encruster association of CCA, <i>H. rubrum</i> and vermetids on clasts and colonies of <i>A. palmata</i> .	Blanchon & Perry, 2004
Muhs et al., 2011	Florida MIS 5.5 and MIS 7	About 3 m. <i>M.</i> <i>cavernosa</i> 10 to 65 m	Stressed shelf-margin reefs	M. annularis and D. strigosa, Colpophyllia; M. cavernosa	Δ.	Shinn <i>et al.</i> , 1989

Thompson <i>et al.</i> , 2011	Bahamas LIG	Approximately 3 m		A. palmata, A. cervicornis, M. annularis, D. strigosa, D. clivosa, S. siderea		
Toscano <i>et al.</i> , 2012	St. Croix, Virgin Islands MIS5.5	1 to 3 m for <i>P</i> . <i>porites</i> ; combined coral, CCA and foraminifera < 5 m	Shallow back-reef or reef flat facies, or lagoonal reef setting	P. porites	CCA: <i>Titanoderma</i> prototypum, Foraminifera: H. rubrum	Cairns, 1982; Suchanek, 1989; Shinn <i>et al.</i> , 1989; Littler & Littler, 2000; Mackenzie <i>et al.</i> , 1965; Elliott <i>et al.</i> , 1996; Pilarczyk & Reinhardt, 2011
Hubbard <i>et al.</i> , 2013	St. Croix, Virgin Islands Holocene	<i>A. palmata</i> growth at 3 to 22 m palaeodepth		A. palmata		Own observations on coral position in drill cores
Stathakopoulos & Riegl, 2015	Inner reef SE Florida shelf Holocene	0 to 5 m based on <i>A. palmata</i>	Immature reef and/or a series of fused patch reefs for the inner and	A. palmata, Orbicella (formerly Montastraea) annularis, M. cavernosa, D. strigosa, Siderastrea spp., C. natans, Millepora spp. and very few occurrences of P. porites, Dichocenia		
Abdul <i>et al.</i> , 2016, Mortlock <i>et al.</i> , 2016	Barbados Deglacial	< 5 m	Reef crest	sp., <i>Manicina aereolata</i> and <i>A. cervicornis</i> <i>A. palmata</i>		Goreau, 1959; Mesolella, 1967
Bard <i>et al.</i> , 2016	Barbados Deglacial	0 to 15 (24) m	Reef crest and deeper front	A. palmata		Goreau & Wells, 1967; Hubbard, 2009; Zimmer <i>et al.</i> , 2006
Toscano, 2016	Barbados Holocene	0 to 5 m; one sample deduced 6.7 m	Reef crest	A. palmata		
Khan <i>et al.</i> , 2017	Caribbean Holocene and modern	 Mean lower low water-5 m; 0 to 30 m 	Reef crest for <i>A</i> . <i>Palmata</i>	 A. palmata; A. cervicornis, C. natans, D. clivosa, D. labrynthiformis, D. strigosa, Dichocoenia stokesii, Orbicella species complex (including O. annularis, O. faveolata and O. franksi), P. astreoides and S. siderea 		
Dechnik <i>et al.</i> , 2019	Brazil (Abrolhos and Espirito Santo) Holocene	0 to 2.9 m (coral), 1 m CCA and vermetids, MLWS for microatolls	Reef flats and micro- atolls	Mussismilia, Siderastrea, Millepora, Montastrea		Martin <i>et al.</i> , 2003; Angulo <i>et al.</i> , 2006; Smithers & Woodroffe, 2000
Stathakopoulos et al., 2020	south Florida Holocene and modern	Typically < 5 m	Reef crest	A. palmata		Lighty <i>et al.</i> , 1982

Vieira et al., This Brazil (Abrolhos <10 to 12 m Reef framework Siderastrea stellata, Mussismilia harttii, Favia CCA: Porolithon gr. Leão & Ginsburg, volume Shelf) gravida, Millepora sp., M. cavernosa and onkodes, Melyvonnea 1997; Leão et al., Late Pleistocene Porites sp. erubescens and 1997; Jesionek et al., and Holocene Dawsoniolithon gr. conicum 2016; Amado-Filho et al., 2018

Indo-Pacific province

Authors	Locality Age	Inferred palaeodepth	Palaeoenvironment	Coralgal assemblages		Source of data
Nakamori, 1986	Ryukyu Islands Pleistocene		Moat to reef crest of fringing reef or protected patch reefs	Community A) Branching Acropora, Montipora and hemispherical Porites		Own observation in modern reefs
		Almost sea-level	Reef edge	Community B) Tabular Acropora		
		0 to 15 m	Reef slope	Community C) Tabular Acropora, hemispherical Porites, Favia, Platygyra		
		10 to 30 m	Reef slope	Community D) <i>Echinophyllia</i> , <i>Oxypora</i> and <i>Mycedium</i> , <i>Favia</i> , <i>Platygyra</i>		
		30 to 100 m	Deep reef slope	Community E) Leptoseris, Pachyseris		
Pirazzoli & Montaggioni, 1988	Tahiti Holocene	< 3 m due to Serpulorbis corals and CCA < 6 m		Massive, branching Acropora robusta- Acropora danai, domal Porites	CCA: Porolithon onkodes, Neogoniolithon fosliei, Lithophyllum, Lithoporella Vermetid: Serpulorbis annulatus, Foraminifera: Homotrema, Carpenteria	Richard, 1982; Faure, 1982; Adey, 1986
Pirazzoli <i>et al.</i> 1988	Tuamotus atolls, Holocene	Difference with living equivalent		Acropora, Porites, algal ridge	· •	Own observations
Chappell & Polach, 1991	Huon Peninsula Deglacial	Not specified	Fringing reef barrier	Porites, Acropora, Montipora, Pocillopora, Favia, Goniopora		
Kan <i>et al.</i> , 1991	Ryukyu Islands (Kume Isl.) Holocene	Shallow water	 Seaward slope of reef crest Inner, landward reef crest 	 Tabular Acropora facies Stubby branching Acropora facies 		Takahashi & Koba, 1977

Edwards <i>et al.</i> , 1993	Huon Peninsula, Papua New Guinea 7-11 ka	Shallow water		Several common corals, mostly <i>Porites</i>	
Eisenhauer <i>et al.</i> , 1993	Houtman Abrolhos, Western Australia Holocene	0 to 25 m	Fringing reef platform	Acropora sp.	No reference
Stein et al., 1993	Huon Peninsula, Papua New Guinea	Shallow water but allow 30 m depth	Barrier reef, lagoon, fringing reef	Porites lutea, Gardineroseris planulata, Platygyra sinensis, P. lamellina, Favia pallida, Plesiastrea curta, Hydnophora microconos	Not specified
Zhu et al., 1993	Turtle Bay, Houtman Abrolhos Islands LIG	0 to 2 m	Reef platform	Thick branching, platy and head corals, including Acropora, Platygyra, Favites and Goniopora	No reference
Yonekura <i>et al.</i> , 1994	Ryukyu Islands (Yoron Isl.) Holocene	Shallow water	1) Reef crest 2) Reef pavement 3) Moat	 Encrusting <i>Acropora</i> facies associated with branching platy and massive <i>Acropora</i>. Mostly bioclastic, some thin branching <i>Acropora</i> Angular and poorly sorted coral fragments 	
Szabo et al., 1994	Oahu, Hawaii LIG	Shallow water habitats		Porites and Pocillopora	No reference
Kan <i>et al.</i> , 1995	Ryukyu Islands (Okierabu Isl.) Holocene	5 m or less	Shallow seaward reef margin	Tabular Acropora facies	
Bard <i>et al.</i> , 1996a	Sumba Island Indonesia 1) Holocene; 2) MIS 5 e	5 to 15 m and terrace	Low-energy, lagoonal environments	 Porites microatoll; Echinophyllia, Lobophyllia, Heliopora coerulea, Stylophora, Seriatopora, Porites nigrescens, Pachyseris speciosa, Mycediurn elephantotus, Fungia sp. 	Faure, 1982
Bard et al., 1996b	Tahiti Deglacial	Less than 6 m	Fringing to barrier reef	A. robusta/danai, A. clathrata, Pocillopora cf. verrucosa, Faviids, Poritiids	Reference to Montaggioni in preparation
Eisenhauer <i>et al.</i> , 1996	Houtman Abrolhos, W Australia LIG	Pacific <i>Acropora</i> 0 to 25 m	Reef framework	Acropora, Platygyra, Favites and Goniopora	Eisenhauer <i>et al.</i> , 1993
Galewsky <i>et al.</i> , 1996	Huon Gulf, Papua New Guinea	< 5 to 10 m	Shallow-water high- energy reef	A. robusta, Galaxea fascicularis and Cyphastrea microphthalma, Porites, Favia, Goniopora, Pavona	Veron <i>et al.</i> , 1977; Veron & Pichon, 1979, 1982; Veron &

	348 ± 10 ka					Wallace, 1984; Veron & Kelley, 1988
Camoin <i>et al.,</i> 1997	Mauritius, Holocene and modern	8 to 15 to 20 m	Base of the spur and groove zone	Encrusting colonies (<i>Echinopora gemmacea</i> , <i>Echinophyllia aspera</i>) and associated massive and tabular branching forms (<i>P. lutea</i> , <i>Pocillopora verrucosa</i> , <i>Platygyra daedalea</i> , <i>C.</i> <i>microphthalma</i> , <i>Goniastrea pectinata</i> , <i>Favia</i> <i>stelligera</i> , <i>Acropora hyacinthus</i> , <i>A. danai</i> , <i>Acropora tenuis</i>		Faure, 1982
		< 6 m	Upper part of the spur and groove zone	Branching and massive coral colonies (A. tenuis, A. hyacinthus, P. verrucosa, P. lutea, C. microphthalma, F. stelligera, G. pectinata, Goniastrea retiformis, Millepora platyphylla), with robust-branching forms (A. robusta-danai, Acropora digitifera)		
		<2 m	Outer reef flat	Robust braching A. gr. danai, A. digitifera, Acropora humilis, Pocillopora damicornis ec. brevicornis, P. lutea, P. daedalea and G. fascicularis.	Coral colonies encrusted by CCA (<i>Lithoporella</i>) and foraminifera (<i>Homotrema</i> and <i>Acervulina</i>)	
	Reunion Holocene	< 15 m	Outer slope or the reef flat zone	Branching Acropora facies, dominated by Acropora cytherea-hyacinthus, A. tenuis and Acropora pharaonis		Faure, 1982
	Mayotte Holocene	< 5 m	Upper forereef to reef flat	Robust-branching <i>Acropora</i> facies, dominated by <i>A. danai/ robusta</i> and locally-associated massive forms (<i>G. retiformis</i>)	CCA: Mesophyllum, Lithoporella Foraminifera: Homotrema, Acervulina	Faure, 1982; Veron 1986
Montaggioni & Faure, 1997	Mauritius Holocene and modern	0 to 6 m	Medium energy reef crest upper forereef	Robust-branching coral facies: robust-branching acroporids (<i>A. robusta</i> , A. <i>danai</i> , <i>A. digitifera</i> , <i>A. humilis</i>), associated with branching (<i>P.</i> <i>verrucosa</i> , <i>P. eydouxi</i>) and massive forms (<i>P.</i> cf. <i>lutea</i> , <i>Leptoria phrygia</i> , <i>P. daedalea</i> , <i>G.</i> <i>retiformis</i> , <i>F. stelligera</i>). Subordinate forms include <i>M. platyphylla</i> , <i>E. gemmacea</i> , <i>Cyphastrea</i> sp. and <i>Leptastrea</i> sp.		Own observations in a fringing reef in the island
		6 to 15 m	Low energy settings, middle parts of the forereef zone	Tabular-branching coral facies: tabular and/or branching corals (A. hyacinthus, A. cytherea, P. verrucosa, P. damicornis, Porites nigrescens). Associated species with various growth forms; they include A. danai, E. aspera, P. cf. lutea, E. gemmacea, Leptastrea sp., Alveopora sp., Platygyra pini and Montipora sp.		

		< 6 m	Inner part of the present- day reef crest and the outermost section of the backreef	Robust-branching-domal coral facies: abundant dome-shaped colonies (<i>P. daedalea</i> , <i>P. cf.</i> <i>lutea</i> , <i>G. fascicularis</i>) and branching <i>P.</i> <i>damicornis</i> . These corals are mixed with large fragments of various robust-branching and domal species (<i>A. danai</i> , <i>A. digitifera</i> , <i>F.</i> <i>stelliara</i> , <i>F. gammacca</i>		
		< 10 m	Middle part of back reef	Foliaceous coral facies: foliaceous species (<i>Pavona cactus, P. divaricata, P. decussata,</i> <i>Montipora foliosa</i>), delicate branching <i>Seriatopora hystrix</i> and branching <i>P.</i> <i>nigrescens.</i> Subordinate forms are <i>G.</i> <i>fascicularis, P. damicornis, Echinopora</i> sp. and various unidentifiable acroporids		
Montaggioni et al., 1997	Tahiti Deglacial and Holocene	0 to 6m	Reef edge and upper reef slope	Robust-branching community: Acropora gr. danai-robusta, associated with branching P. cf. verrucosa, A. humilis and scarce domal Leptastrea sp., Porites cf. lobata and Montastrea annuligera	CCA: crusts 2 to 4 cm-thick <i>Hydrolithon (P.) onkodes</i> and, to a lesser extent, of <i>N. fosliei</i>	Bouchon, 1985; Pirazzoli & Montaggioni, 1988; Montaggioni & Camoin, 1993;
		5 to 15 m	Outer slopes	Tabular branching <i>Acropora</i> community: tabular <i>A. hyacinthus, A. cytherea</i> and <i>A. clathrata</i> species, with subordinate, plate- shaped <i>A. danai-robusta</i> ecomorphs and domal <i>M. annuligera</i> .	CCA: mm-thick crusts of Neogoniolithon cf. absimile, Neogoniolithon cf. propinquum, Dermatolithon cf. tessellatum and Mesophyllum cf. prolifer. H. onkodes rare or absent.	Bouchon, 1985, 1996
		> 5 m and outer reef flat and windward lagoon	Outer slope, outer reef flat and windward lagoon	Domal <i>Porites</i> community: <i>P.</i> cf. <i>lutea</i> and <i>P.</i> cf. <i>lobata</i> , mixed with a few <i>P.</i> cf. <i>verrucosa</i> and tabular acroporids.	CCA: branching Lithophyllum < 1 cm-thick over Porites. When present, H. onkodes with D. cf. tessellatum and N. fosliei form mm-thick crusts.	Faure & Laboute, 1984; Kuhlman & Chevalier, 1986; Bouchon, 1996
Stirling <i>et al.</i> , 1998	W Australia LIG	0 to 1 m, surface of highest <i>in situ</i> corals	Fringing reefs	<i>Goniastrea</i> , Faviidae and <i>Porites</i> coral heads, <i>Acropora</i> tabulate		Veeh <i>et al.</i> 1979
Webster <i>et al.</i> , 1998	Kikai-jima, Ryukyu Islands Holocene	0 to 3 m?	High energy, shallow outer reef flat/edge	Subsurface 1): tabulate and robust-branching <i>Acropora</i> spp. (<i>A. hyacinthus</i> , <i>A. humilis</i> groups), <i>Acropora palifera</i> and <i>Acropora monticulosa</i> .		Iryu <i>et al.</i> , 1995; Done, 1982; Nakamori, 1986
		5 to 10 m	Low-energy, reef slope	Subsurface 2): massive <i>Porites</i> spp. (<i>P. lutea</i> , <i>P. lobata</i> or <i>P. australiaensis</i>) with associated		

				massive Faviidae such as <i>L. phrygia</i> , <i>Goniastrea</i> sp., <i>F. pallida</i> , <i>Favites</i> sp., <i>Platygyra</i> sp., <i>Montastrea</i> sp., <i>Montipora</i> sp. and <i>Leptastrea</i> sp.		
		0 to 3 m?	Outer reef flat/reef edge to upper reef slope, high energy and high turbidity	Surface A): tabulate, encrusting, minor massive Acropora sp., A. palifera, Montipora sp., A. monticulosa, P. verrucosa, associated Faviidae		
		0 to 1 m?	Shallow upper reef slope, moderate energy	Surface B): tabulate, encrusting <i>Acropora</i> sp., <i>A. palifera</i> , <i>Montipora</i> sp., <i>A. monticulosa</i> , lack		
		0 to 3 m?	and less turbid Very shallow reef flat to reef edge, high energy and turbidity	of Favildae Surface C): massive/columnar, tabulate G. <i>retiformis, Acropora</i> sp., <i>Favites</i> sp., <i>Montipora</i> sp.		
			Very shallow, reef flat to upper reef slope, high turbidity and high energy	Surface D): massive/columnar, encrusting and tabulate <i>Millepora exaesa</i> , <i>H. coerulea</i> , <i>G. retiformis</i> , <i>Acropora</i> sp., <i>Favites</i> sp.		
		5 to 10 m	Deeper reef slope, moderate energy and turbidity	Surface E): encrusting and massive <i>Montipora</i> sp., <i>Porites</i> sp., associated Faviidae, a distinct lack of <i>Acropora</i> sp.		
Cabioch <i>et al.,</i> 1999	Mauritius, Tahiti, New Caledonia Deglacial and modern	6 to 15 m	Outer reef margin, middle forereef	Tabular coral facies: mainly composed of <i>A</i> . gr. <i>hyacinthus/cytherea</i> associated with <i>P</i> . <i>damicornis</i> , <i>P. eydouxi</i> , <i>Montipora digitata</i> and various other acroporids.	CCA: crusts < 5 mm-thick, generally composed of <i>H.</i> <i>onkodes</i> , <i>Lithophyllum</i> sp., <i>M.</i> cf. <i>prolifer</i> and <i>D.</i> cf. <i>tessellatum</i>	Faure, 1982; Done, 1982; Marshall & Davies, 1982; Veron, 1990; Adey <i>et al.</i> , 1982; Adey, 1986
		0 to 6 m (vermetids are restricted to 0-4 m)	Outer margin reef, medium to high-energy, reef crest or upper forereef zone	Robust-branching coral facies: A. gr. danai/robusta, A. humilis, A. digitifera, P. verrucosa and various domal Porites.	CCA: thick veneers (up to 4 cm) of <i>H</i> . cf. onkodes, <i>D</i> . cf. tesselatum, Lithophyllum cf. molluccense and <i>N</i> . cf. fosliei. Vermetid: Dendropoma maximus and S. annulatus	Faure, 1982; Faure & Laboute, 1984; Delesalle <i>et al.</i> , 1985; Camoin & Montaggioni, 1994; Morton, 1973; Adey <i>et al.</i> 1982; Richard, 1982; Laborel, 1986
		0 to 10 m	Outer margin reef, more sheltered habitat, inner part of reef crest or outermost section of backreef	Domal coral facies: includes <i>Porites</i> spp. (<i>P.</i> cf. <i>lutea</i> and <i>P.</i> cf. <i>lobata</i>), occasional <i>A.</i> gr. <i>danai/robusta</i> .	CCA: thin veneers of <i>H</i> . cf. onkodes or <i>D</i> . cf. tessellatum	Faure & Laboute, 1984; Bouchon, 1985; Kühlman & Chevalier, 1986
		0 to 10 m		Other coral species may be also finite sea-level recorders (<i>G. retiformis</i> , <i>G. pectinata</i> , <i>F</i> .		

Esat <i>et al.</i> , 1999	Huon Peninsula, Penultimate deglaciation	< 12 m based on thickness of growth bands, but 0 to 20 m as uncertainity	Fringing reef	stelligera, Stylophora pistillata, Montipora tuberculosa and M. platyphylla Porites and various Faviidae		Baker & Weber, 1975; Highsmith, 1979; Huston, 1985.
Israelson and Wohlfarth, 1999	Seychelles MIS 5e	Uppermost subtidal zone	Marine cliffs and overhangs within the subtidal zone	Goniastrea and Porites	CCA and vermetids	Montaggioni & Hoang, 1988
Banerjee, 2000	east coast of south India LIG and Holocene	0 to 2 to 3 m	Fringing reef terraces	Acropora, Porites, associated Diploastrea, Cycloseris and Goniopora only in LIG deposits		Own observations in Palk Bay
Camoin <i>et al.</i> , 2001	Mururoa 1) MIS 1, 5, 7 and 9 2) MIS 2, 4 and 8	1.1) 0 to 6 m, 0 to 3 m with vermetids 1.2) 8 to 15 m 2.1) 15 to 30 m 2.2) 15 to 30 m	1.1) High-energy reef fronts or upper forereef slopes 1.2) Middle part of the forereef zone and inner reef flat and lagoonal environments 2.1) Middle reef slope 2.2) Upper reef slope	 1.1) A. gr. danai-robusta and associated P. verrucosa, A. hyacinthus, A. humilis, F. stelligera, G. pectinata, G. retiformis and L. phrygia 1.2) Branching poritids (Alveopora allingi), A. cf. humilis, Pocillopora meandrina, L. phrygia, P. daedalea, Porites gr. solida/lobata and Porites andrewsi 2.1) Laminar Montipora caliculata associated with Cyphastrea. Scarce reworked F. stelligera, A. cf. humilis and P. gr. verrucosa/meandrina. 2.2) Branching Porites (Alveopora allingi) and Pocillopora, associated with tabular Montipora 	1.1) CCA: H. onkodes, Lithophyllum sp. and Porolithon sp.; peyssonneliaceans: Chevaliericrusta cf. polynesiae), Foraminifera: Carpenteria, Rupertia, H. rubrum, Miniacina miniacea, Sporadotrema; and acervulinids Vermetids: D. maximus and S. annulatus 2.1) CCA: Hydrolithom munitum, Hydrolithon rupestris, Neogoniolithon, Sporolithon episoredion and Sporolithon molle, Lithothamnion sp., Lithothamnion sp., Lithothmnion muelleri and Phymatolithon; peyssonneliaceans (Peyssonnelia and Polystrata) Foraminifera: thick crusts of Sporadotrema, Homotrema, Rupertia, Carpenteria, acervulinids	Montaggioni et al., 1997; Camoin et al., 1997, 1999; Cabioch et al., 1999; Bablet et al., 1995; Chevalier et al., 1969; Faure & Laboute, 1984; Kuhlman & Chevalier, 1986; Bouchon, 1996

2.2) CCA: Sporolithon, Lithoporella Foraminifera: Rupertia, Miniacina

Sagawa <i>et al.</i> , 2001	Ryukyu Islands Pleistocene (1.5- 3.0 Ma)	0 to 5 m	Moats and lagoon	Assemblage A) Branching forms of Acropora such as the Acropora formosa group and Acropora aspera group. S. pistillata also predominates, scarce Porites spp., Acrhelia horrescens and Porites cylindrica		Nakamori, 1986; Nakamori <i>et al.</i> , 1995b
		0 to 5 m	Reef crest-upper reef slope	Assemblage B) Tabular and digitate forms of <i>Acropora</i> such as <i>A. hyacinthus</i> and <i>A.</i> <i>monticulosa</i> groups and <i>P. lutea</i>		
		5 to 20 m	Upper to middle reef slope	Assemblage C) Massive and hemispherical faviid corals (<i>F. stelligera</i> , <i>Platygyra sinensis</i> , <i>Platygyra ryukyuensis</i> and <i>Favites</i> spp.) associated with thicker encrusting <i>A. palifera</i> .	CCA co-occur abundantly	
		20 to 30 m	Middle reef slope	Assemblage D) Foliaceous, encrusting and laminar Oxypora spp., Pectinia spp. and Mycedium spp.		
		30 to 50 m	Lower reef slope	Assemblage E) Foliaceous, encrusting and laminar Leptoseris species (L. yabei, L. hawaiiensis and L. papyracea) associated with Pachyseris rugose, P. speciosa, Cycloseris spp., Diaseris spp., Zoopilus echinatus and Cynarina lacrymalis	CCA as rhodoliths	
Stirling <i>et al.</i> , 2001	Henderson Island, Pacific MIS 15 but mainly MIS 9	0 to 15 m	Fringing reefs	Montastrea		No reference
Hearty, 2002	Oahu MIS 11 and MIS 5e	Middle Plesitocene Unit 3) 1.5 to 3.5 m	Terraces	Middle Pleistocene Unit 3) <i>Platygyra</i> sp., <i>Pocillopora</i> sp. and <i>Porites</i> sp. Late Pleistocene Unit 4) <i>in situ</i> corals not specified		Hearty <i>et al.</i> , 2000; Easton & Ku, 1981; Muhs & Szabo, 1994; Sherman <i>et al.</i> , 1993
Kayanne <i>et al.,</i> 2002	Palau Islands Holocene	2) 0 to 4 m	Barrier reef crest and lagoon	 Branching Acropora (6 to 15 mm diameter) Digitate or corymbose Acropora and short robust branches of Acropora. A. digitifera and A. humilis are the most probable species; Delicate branches of Acropora, Montipora 	1) CCA as rhodoliths	Own observation in the modern reef; Wallace, 1999

and Seriatopora common. Massive corals

Cabioch <i>et al.</i> , 2003	Urelapa island, Vanuatu Deglacial and Holocene	1) < 6 m below MLSL	 Reef crests or upper forereef slopes Outer slopes 	(<i>Porites</i> and <i>Lobophyllia</i>) and thin plate corals (<i>Montipora</i> and <i>Turbinaria</i>) dispersed in sand 4) <i>Porites</i> heads 1) Branching coral facies of <i>Acropora</i> spp., small coral buildups including favids 2) Domal coral facies including <i>Porites</i> spp. (related to <i>P.</i> gr. <i>lutea/lobata</i>) with occasional branching <i>Acropora</i> spp.	CCA: <i>H.</i> cf. <i>onkodes</i> Vermetids	Morton & Challis, 1969; Pichon, 1973; Adey <i>et al.</i> , 1982; Faure, 1982; Adey, 1986; Laborel, 1986; Done & Navin, 1990; Veron, 1990; Cabioch <i>et al.</i> , 1999; Davies <i>et al.</i> , 1985; Montaggioni, 1988; Faure & Laboute, 1984; Kühlman & Chevalier, 1986
Collins <i>et al.</i> , 2003	Ningaloo reef, W Australia 1) LIG; 2) Holocene	Refer to literature in the region	 Forereef Forereef and lagoon 	 Branching Acropora coral framestone; Porites, P. cf. lobata, Montastrea, Acropora, Favia 		Zhu <i>et al.</i> , 1993, Eisenhauer <i>et al.</i> 1993, 1996; Collins <i>et al.</i> , 1997a; Stirling <i>et al.</i> 1998
Cutler et al., 2003	1) Huon Peninsula 2) Barbados MIS 5e to Holocene	 Terrace crest elevation; Acropora sp. grew very close to sea- level a few metres from sea-level 	Terraces	 Acropora sp., Favia laxa, Gardineroseris planulata, Montipora sp., Porites sp.; A. palmata, Porites 		1) Stein <i>et al.</i> , 1993; Ota <i>et al.</i> , 1993; Chappell <i>et al.</i> , 1994; Bloom <i>et al.</i> , 1974; 2) Mesolella, 1967
Sugihara <i>et al.</i> , 2003	Kikai-jima, Ryukyu Islands Holocene	1.5 m for peak of <i>P. verrucosa</i>	Upper reef slope	Terrace I. Acropora (A. gemmifera, A. digitifera, A. hyacinthus, A. monticulosa), P. verrucosa, G. retiformis and F. stelligera; Terraces II to IV. Same and P. eydouxi, Pavona minuta, Favites chinensis, Favites abdita, E. gemmacea, L. phrygia, P. daedalea, Montastrea curta, F. pallida, Goniastrea edwardsi		Own observations, Webster <i>et al.</i> , 1998
Webster & Davies, 2003	Ribbon 5, GBR Pleistocene, last 500 ky	< 10 m	Reef edges and upper reef slopes exposed to strong wave action	Assemblage A: robust-branching corals (Acropora sp. group 1—humilis group; Acropora sp. group 2—robusta group, A. palifera, S. pistillata and P. verrucosa, P. damicornis) with associated massive faviids (Goniastrea sp. and Platygyra sp.)		Done, 1982; Veron, 1986; Bard <i>et al.</i> , 1996; Montaggioni <i>et al.</i> , 1997; Camoin <i>et al.</i> , 1997; Nakamori, 1986; Iryu <i>et al.</i> ,

			Lower-energy (and perhaps deeper) reef environments	Assemblage B1: massive <i>Porites</i> sp. group 1 (<i>Porites</i> cf. <i>lutea</i> , <i>P</i> . cf. <i>solida</i>) and faviids (<i>Favia</i> sp., <i>Favites</i> sp.) with significant encrusting forms (<i>Porites</i> sp. group 2 and <i>Montipora</i> sp.)		1995; Nakamori <i>et</i> <i>al.</i> , 1995; Webster <i>et</i> <i>al.</i> , 1998) Done, 1982; Veron, 1986, Montaggioni <i>et</i> <i>al.</i> , 1997
			Lower-energy environment with perhaps increased turbidity	Assemblage B2: massive <i>Porites</i> sp. group 1 (<i>P.</i> cf <i>lutea</i>) and associated faviids (<i>Favia</i> sp., <i>Favites</i> sp.) with no encrusting forms		Marshall & Orr, 1931; Manton, 1935; Wells, 1954; Scoffin & Stoddart, 1978; Martin <i>et al.</i> , 1989
Yamano <i>et al.,</i> (2003)	Ryukyu Islands (Ishigaki Isl.) Holocene	5 m or less	 Reef crest and spurs Reef pavement and backreef moat 	 Densely packed <i>in situ</i> colonies of robust- branching and tabular <i>Acropora</i> sp. Ramose-branching <i>Montipora</i> sp. and <i>Acropora</i> sp. 		Takahashi <i>et al.</i> , 1985; Yamano <i>et al.</i> , 2000, 2001a, 2001b
Braga & Aguirre, 2004	Ribbon 5, GBR Pleistocene, last 500 ky	Mastophoroid assemblage < 10 m	Reef framestone and rhodoliths		CCA: A) Mastophoroid assemblage: H. onkodes, N. fosliei, Aethesolithon problematicum, Neogoniolithon conicum, H. munitum, Hydrolithon reinboldii, Lithophyllum pustulatum group, Spongites, Lithophyllum kotschyanum group, Lithophyllum incrassatum. Very minor Lithoporella, Mesophyllum, Lithothamnion and Sporolithon B) Lithophylloid assemblage: L. gr. pustulatum, L. kotschyanum group, Lithophyllum incrassatum. Minor N. fosliei and N. conicum, Hydrolithon (H. onkodes and H. munitum), Spongites, Lithothamnion,	Adey, 1979, 1986; Adey et al., 1982; Gordon et al., 1976; Bosence, 1984; Minnery et al., 1985; Minnery, 1990; Verheij & Erftemeijer, 1993; Iryu et al., 1995; Cabioch et al., 1999; Rasser & Piller, 1997; Montaggioni & Camoin, 1993; Monataggioni et al., 1997; Lund et al., 2000

Camoin <i>et al.</i> , 2004 Submersible data	Mayotte, Seychelles 1) 17,000 to 18,000 yr BP; 2) 13,600	1) 0 to 5 m; 2) 0 to 20 m	Reworked corals on the reef wall in outer barrier reef	 G. fascicularis and Acropora Coral assemblage dominated by massive Porites 	Mesophyllum and Lithoporella C) Melobesioid assemblages: Mesophyllum and Lithothamnion, minor L. gr. pustulatum, Spongites, Lithoporella and Sporolithon CCA: Lithophyllum sp. and H. onkodes	
Camoin <i>et al.</i> , 2004 Drill core data	1) Reunion; 2) Mauritius; 3) Mauritius; 4) Mahé; 5) Toliara Holocene	1) 0 to 15 m; 2.1) 8 to 15 m; 2.2) 0 to 6 m; 2.3) 2 m; 3) 0 to 5m; 4.1) 5 to 20 m; 4.2) 0 to 6 m; 5.1) 3 to 10 m based on molluscs; 5.2) Upper forereef to reef flat	 Outer slope or inner reef flat; Spur and groove zone; Upper part of the spur and groove zone; Outer reef flat; High-energy reef edge; Lower forereef slopes; Reef flat and upper forereef zones; Neef slope; Upper forereef to reef flat 	 Rubble of branching Acropora facies, rubble from A. gr. hyacynthus, A. tenuis and A. muricata 2.1) E. gemmacea, E. aspera and massive and tabular branching forms including P. lutea, P. verucosa, P. daedalea, C. microphthalma, G. pectinata, F. stelligera, A. hyacinthus, A. danai and A. tenuis 2.2) A. tenuis, A. hyacinthus, P. verrucosa, P. lutea, C. microphthalma, F. stelligera, G. pectinata, G. retiformis and M. platyphylla associated with robust-branching A. gr. robusta and A. digitifera 2.3) A. gr. robusta, A. digitifera, A. humilis, P. damicornis ec. brevicornis, P. lutea, P. daedalea and G. fascicularis Branching Acropora dominated by A. gr. robusta locally associated with scattered massive G. retiformis; A.1) Massive forms G. fascicularis, F. stelligera, L. phrygia, P. eydouxi, Leptastrea sp., Echinopora sp., P. daedalea, Porites sp., Fungia sp., Favia sp., Montipora sp., associated with A. humilis, A. danai and S. pistillata. Robust-branching A. robusta group with G. retiformis, S. pistillata, P. verucosa, Millepora sp., G. fascicularis, L. phrygia, Alveopora sp., Porites sp. and faviids J. Acropora, Pocillopora and Galaxea 	 4.1) CCA: Lithophyllum sp., Mesophyllum sp. and Titanoderma sp. 4.2) CCA: crusts of H. onkodes and Mesophyllum sp. 5.1) CCA and molluscs 	Montaggioni & Faure, 1997

Sasaki <i>et al.</i> , 2004	Ryukyu Islands (Kikai Isl.) Pleistocene MIS 3 to 4	1) 0 to 5m 2) 5 to 20m 3) 20 to 60m 4) 30 to 50m	 Reef crest to upper reef slope Upper reef slope Middle reef slope? Lower reef slope 	 5.2) Branching Acropora facies, dominated by A. gr. robusta with A. cf. humilis, P. cf. verrucosa, P. eydouxi and locally scattered massive F. cf. stelligera, Diploastrea and Heliopora 1) Tabular/digitate Acropora, thick branching Acropora 2) Massive Faviid corals 3) Coralline algae (rhodolith), encrusting corals 4) Leptoseris mycetoseroides, Cycloseris 		Nakamori, 1986; Sagawa <i>et al.</i> , 2001
Webster <i>et al.</i> , 2004a	Huon Gulf, Papua New Guinea middle to late Pleistocene (416 to 20 ka)	< 10 m (< 5 m)	Flat/upper reef slope environment, best developed on windward margins exposed to strong wave activity	<i>costulata</i> Assemblage A: robust branches or ridges of <i>A.</i> <i>palifera, A. humilis</i> group, <i>Acropora grandis</i> and the tabulate <i>A. hyacinthus</i> group with encrusting <i>Montipora</i> sp. (<i>M. tuberculosa, M.</i> <i>informis</i>), submassive to massive <i>Porites</i> sp. (<i>P.</i> <i>horizontalata, P. lobata</i>) and minor encrusting colonies of <i>Siderastrea savignyana,</i> <i>Psammocora superficialis</i> and faviids (<i>Favia</i> <i>laxa, Montastrea multipunctata</i>)	CCA: Mastophoroid assemblage: <i>N. fosliei, H. onkodes and</i> associated <i>L.</i> gr. <i>pustulatum</i>	Done, 1982; Veron, 1986; Bard <i>et al.</i> , 1996; Montaggioni <i>et al.</i> , 1997; Camoin <i>et al.</i> , 1997; Nakamori, 1986; Iryu <i>et al.</i> , 1995; Webster <i>et al.</i> , 1998; Pandolfi & Minchin, 1995; Borowitzka & Larkum, 1986; Adey, 1986; Montaggioni <i>et al.</i> , 1997; Cabioch <i>et al.</i> , 1999; Iryu <i>et al.</i> , 1995; Matsuda <i>et al.</i> , 1994
		Shallow	Shallow, perhaps upper- reef slope environments, lower to moderate energy reef conditions, more sheltered margins	Assemblage B: encrusting Montipora (M. monasteriata, M. corbettensis, M. cf. aequituberculata) and Porites sp. (P. horizontalata) with associated faviids (Montastrea salebrosa?, M. curta?, Cyphastrea sp., F. laxa, Echinopora hirsutissima or E. gemmacea) and agariciids (S. savignyana, Pseudosiderastrea tavamai?, Psammocora sp.)	CCA: Melobesioid assemblage: thin crusts of <i>Mesophyllum</i> sp., with <i>Lithothamnion</i> sp., <i>Lithoporella</i> sp., <i>Sporolithon</i> sp., <i>Peyssonnelia</i> sp. (10 to 90 m)	Done, 1982; Veron, 1986; Montaggioni <i>et</i> <i>al.</i> , 1997; Pandolfi & Minchin, 1995; Adey, 1979, 1986; Adey <i>et al.</i> , 1982; Lund <i>et al.</i> , 2000
Webster <i>et al.,</i> 2004b	Big Island of Hawaii Deglacial	0 to 20 m	Reef crest	Porites		Adey <i>et al.</i> , 1982; Marshall <i>et al.</i> , 1998; Minnery <i>et al.</i> , 1985; Webster <i>et al.</i> , 2004a

Montaggioni, 2005	Indo-Pacific Deglacial, Holocene and modern	60 to 120 m Very shallow	Deep coralline algal crust, deeper slope Windward reef crest and reef flat		CCA: Mesophyllum and Lithothamnion, Sporolithon, Lithoporella, L. gr. pustulatum and Peyssonnelia sp. CCA facies: H. onkodes, Neogoniolithon spp., Mesophyllum sp. and Lithophyllum sp., associated with encrusting foraminifera, vermetids and	Adey, 1979, 1986; Adey <i>et al.</i> , 1982; Lund <i>et al.</i> , 2000 Many references
		0 to 6 m	High-energy, windward margins (upper forereef to outer reef flat zones)	Robust-branching coral facies: A. gr. robusta: A. robusta, A. danai, A. abrotanoides, A. palmerae; A. (Isopora) palifera; A. gr. humilis: A. humilis, A. digitifera, A. gemmifera; A. latistella and pocilloporids (P. damicornis, P. eydouxi, P. verrucosa, P. meandrina, S. pistillata, S. mordax). Subordinate domal P. lutea, P. lobata, L. phrygia, P. daedala, G. retiformis, Goniastrea favulus, F. stelligera, F. pallida, Favia flexuosa, Psammocora sp., Astreopora sp., Montipora sp., platy (M. platyphylla), tabular (A. hyacinthus), columnar (Porites annae) and encrusting (M. tuberculosa, E. gemmacea).	serpulids.	
		0 to 25 m, mainly 10 to 15 m	 Semi-exposed to sheltered, windward to leeward reef slopes and reef flats; In shallow, higher wave-energy areas; 3) In less agitated or deeper waters 	 Domal coral facies: 1) The dominant poritids P. lutea, P. lobata, P. cylindrica, faviids F. favus, F. stelligera, F. speciosa, F. abdita, Cyphastrea spp., G. pectinata, G. edwardsi, Diploastrea heliopora, M. curta, with associated mussids (Symphillia recta), merulinids (Hydnophora microconos) and acroporids (A. listeri, Acropora spp.). P. lobata and robust-branching A. gr. robusta and A. humilis, A. palifera, Acropora bruggemanni, S. pistillata). Domal P. lobata, P. tayamai, Moseleya latistellata, tabular A. gr. hyacinthus, delicate branching Acropora divaricata, A. splendida, A. muricata, S. hystrix, and/or foliaceous 	 2) Thick CCA crusts. 3) CCA poorly developed. 	

		Montipora capitata, M. aequituberculata, laminar M. verrucosa and columnar P. nigrescens.
0 to 20 m, mostly 2 to 15 m	Semi-exposed or sheltered, upper and mid-forereef zones, reef flats and adjacent backreef slopes and patches, usually in mid- shelf situations.	Tabular branching coral facies: A. gr. hyacinthus (A. hyacinthus, A. cytherea, A. subulata) and other acroporids (A. splendida, A. intermedia, A. humilis, A. digitifera, A. nobilis, A. squarrosa, M. digitata, S. pistillata), pocilloporids (P. verrucosa, P. damicornis, P. eydouxi) and poritids (P. nigrescens, P. lutea). Subordinate domal Leptastrea and Platygyra, columnar Alveopora and laminar Echinophyllia and Echinopora.
0 to 20 m	Lower to middle parts of fore-reef zones, inner reef flats and nearby backreef slopes in semi- exposed to sheltered environments.	Arborescent-coral facies: <i>Acropora</i> species: <i>A.</i> gr. divaricata (<i>A.</i> divaricata, <i>A.</i> clathrata), <i>A.</i> aculeus, <i>A.</i> valenciennesi, <i>A.</i> tenuis, <i>S.</i> hystrix and <i>S.</i> pistillata. In sheltered areas large thickets of <i>A.</i> gr. muricata (<i>A.</i> muricata, <i>A.</i> grandis), <i>A.</i> gr. aspera (<i>A.</i> aspera, <i>A.</i> pulchra), <i>A.</i> cerealis, <i>A.</i> valida, <i>A.</i> tortuosa, <i>A.</i> austera, <i>A.</i> intermedia, <i>A.</i> microphthalma, <i>A.</i> gr. lovelli, <i>S.</i> hystrix, <i>S.</i> pistillata, <i>P.</i> damicornis, Echinopora horrida, subordinate <i>A.</i> gr. hyacinthus, <i>G.</i> pectinata, <i>Acropora</i> squarrosa, <i>P.</i> lutea.
0 to 15 m	Sheltered, outer to backreef environments	Foliaceus coral facies: <i>M. aequituberculata</i> , <i>Montipora</i> spp., <i>P. speciosa</i> , <i>P. rugosa</i> , <i>Turbinaria mesenterina</i> , <i>T. reniformis</i> , <i>T.</i> <i>frondens</i> , <i>Merulina ampliata</i> , in association with frondose pectiniids (<i>Pectinia alcicornis</i>), domal faviids (<i>Favia</i> spp., <i>Favites</i> spp., <i>G.</i> <i>pectinata</i> , <i>Goniastrea</i> spp., <i>Cyphastrea</i> sp.), poritids (<i>P. solida</i>) and merulinids (<i>H.</i> <i>microconos</i>), branching pocilloporids (<i>S.</i> <i>hystrix</i> , <i>S. pistillata</i> , <i>P. damicornis</i>) and acroporids (<i>Acropora splendida</i>).
1) 0 to 10 m; 2) > 20 m	1) High-energy reef crests, outer and inner slopes of ocean-facing fringing reefs, mid- to inner-shelf reefs;	Encrusting coral facies. 1) According to the region, includes <i>Montipora</i> species: <i>M. monasteriata, M. capitata, M. undata, M. patula, M. danai</i> , the agariciids <i>L. mycetoseroides, P. speciosa, E. aspera</i> , the faviids <i>Leptastrea purpurea, Echinopora</i>

Collins <i>et al.</i> , 2006	Houtman Abrolhos,	0.4 m for coral pavement, exposed	2) Deep outer shelf-reef slopes	lamellosa, E. gemmacea, Cyphastrea serailia, C. microphthalma, C. ocellina, the poritid Alveopora daedala, the merulinid M. ampliata; may be mixed with dome-shaped faviids (F. pallida, F. speciosa, Oulophyllia crispa), acroporids (A. myriophthalma, A. ocellata, Astreopora spp.), poritids (P. lutea, P. lobata, Goniopora lobata, G. columna), mussids (Lobophyllia corymbosa, Lobophyllia hemprichii, Acanthastrea echinata), with finely branching (Acropora echinata, S. hystrix) or with meandroid forms (Plerogyra sinuosa). Also free-living corals (Fungia spp., Halomitra sp., Herpolitha sp.) 2) Predominance of Montipora, Pachyseris, Leptoseris and/or Echinophyllia. The dominant species may be M. aequituberculata, M. verrucosa, P. speciosa, Leptoseris (L. incrustans, L. hawaiiensis, L. scabra, L. mycetoseroides), E. aspera, E. echinata, O. crispa, in association with P. lobata, P. lutea, Oxypora lacera, Pectinia lactuca, Horastrea indica, Blastomussa merleti, Gardinoseris planulata, Lobophyllia costata, P. stellata, G. pectinata, G. palauensis, L. purpurea, Pavona maldivensis, C. microphthalma, H. microconos, Goniopora sp., E. gemmacea and D. heliopora. Subordinate F. pallida, F. speciosa, F. abdita, L. hemprichii, P. damicornis and P. eydouxi Acropora spp.	
	Western Australia Holocene	in extremely low tides			
Frank <i>et al.</i> , 2006	New Caledonia Holocene, MIS 5.5, MIS 7.5 and more	Not specified	Barrier reef	Acropora, Porites, Porites lutea, Favia, Favites, Echinopora, Astreopora and Goniopora, fungiids, faviids, branching and robust coral	
Webster <i>et al.</i> , 2006, 2007	Off Lanai, Hawaiian Islands	0 to 5 m	Ooids and LBF		CCA: H. onkodes, Amphiroa

MIS 3 to Deglacial

	Degraciai	< 30 to 60 m		Porites, Leptoseris.	CCA: Lithothamnion prolifer, L. incrassatum, Spongites and H. munitum	Iryu <i>et al.</i> , 1995; Sagawa <i>et al.</i> , 2001; Keats <i>et al.</i> , 1996; Lund <i>et al.</i> 2000
		60 to 120 m			CCA: <i>Lithothamnion</i> sp., <i>Sporolithon, Lithoporella,</i> <i>Mesophyllum</i> and thin laminar thalli	Adey <i>et al.</i> , 1982; Davies <i>et al.</i> , 2004; Lund <i>et al.</i> , 2000; Marshall <i>et al.</i> , 1998; Irau <i>et al.</i> , 1995
Andersen <i>et al.</i> , 2008	Henderson Island, equatorial Pacific MIS 15	0 to 5 m	Patch reef in lagoon	Branching Pocillopora, Acropora, Pavona, Stylophora, Astropora and head Faviidae, Porites		no reference
Cabioch <i>et al.</i> , 2008	Marquesas, French Polynesia LGM and deglacial	 High-energy, shallow-water reef settings; Deeper-water organisms 	 High- and moderate- energy outer reef zones, probably on inner reef flats. Inner reef flats and backreef or protected, deeper outer slopes 	1) Mainly <i>Porites</i> gr. <i>lobata</i>	 2 to 3 cm-thick crusts of H. onkodes, H. reinboldii and L. pustulatum group. 2) Algae: Halimeda associated with Amphiroa Foraminifera (Amphistegina and Nummulitids) 3) deep-living CCA (Mesophyllum sp., M. erubescens) 	Braga & Aguirre, 2004; Montaggioni <i>et</i> <i>al.</i> 1997; Montaggioni, 2005
Webster <i>et al.</i> , 2009	1) Huon Gulf, Papua New Guinea 2) Hawaii Last 500 ka	1.1) 0 to 5 m 1.2) Shallow, < 20 m 2.1) < 10 to 15 m	1.1) Shallow highenergy reef1.2) Less exposed, lowerenergy reef2.1) Shallow coralgalframeworks	 1.1) Robust-branching Acropora spp. (i.e., A. palifera, A. humilis group) 1.2) Encrusting Montipora spp. 2.1) Massive P. lobata, robust branching Porites compressa, encrusting Montipora and Lentastrea 	CCA: N. fosliei and H. onkodes Foraminifera: Amphisorus, Peneroplis	Iryu <i>et al.</i> , 1995; Davies <i>et al.</i> , 2004; Webster <i>et al.</i> , 2004a, b, 2006, 2007
		20 to 60 m	intermediate fore-reef slope	Encrusting/foliaceous corals (<i>Leptoseris</i> , <i>Pavona</i> , <i>Montipora</i>)	CCA: thick fruticose L. prolifer, M. erubescens, Lithophyllum acrocamptum and H.	

acrocamptum and H. munitum Foraminifera: Heterostegina depressa, Amphistegina radiata, A. lessonii and Operculina

		60 to 120 m	deep fore-reef slope		CCA: open framework of Lithothamnion, Mesophyllum, Sporolithon, Lithoporella and Peyssonnelia Foraminifera: Cycloclypeus carpenteri	
Hongo & Kayanne, 2009	Ishigaki Island, Ryukyu Islands Holocene	Assemblage A) 0 to 2 m; Assemblage B) 2 to 5 m	Barrier reef crest	Assemblage A) Corymbose, digitate A. digitifera, G. aspera, P. sinensis Assemblage B) Corymbose, tabulate with minor massive A. digitifera, A. hyacinthus, G. retiformis, M. curta, P. verrucosa, P. australiensis		Own observations in living reef
Humblet <i>et al.</i> , 2009	Okinawa Island and Kikai Island, Ryukyu Islands Middle Pleistocene		 Shallow upper reef slope Upper reef slope Upper reef slope Back-reef shallow lagoon? Reef Edge to shallow upper reef slope, or low- turbidity back-reef lagoon Reef edge to shallow upper reef slope 	 Acropora (Isopora) palifera, associated with A. gr. monticulosa, Galaxea fascicularis and Favia gr. Pallida Various faviids, associated with (depending on location) Acropora (Isopora) palifera, A gr. monticulosa?, tabular Acropora, Gardineroseris planulata, Pachyseris rugosa, Lobophyllia hemprichii, Porites, submeandroid Goniastrea, Cyphastrea, corymbose and tabular Acropora. Corymbose and tabular Acropora, associated with Merulina, Favites, Cyphastrea (+fragments of Galaxea horescens) Tabular Acropora, associated with Montipora, Porites and various faviids 		Sheppard, 1982; Kühlmannn, 1983; Nakamori, 1986; Chou & Yamazato, 1990; Iryu <i>et al.</i> , 1995; Veron, 1992; Nishihira & Veron, 1995; Nakamori <i>et al.</i> , 1999; Veron, 2000; Sagawa <i>et al.</i> , 2001; JCRS, 2004;
			6) Middle reef slope7) Middle to lower reef slope	 5) Pocilloporids, associated with <i>Platygyra</i> (incl. <i>Platygyra ryukyuensis</i>) and various other faviids 6) Laminar <i>Porites</i> and/or <i>Montipora</i>, associated with <i>Galaxea astreata</i>, small 		

			8) Distal/off-reef setting (soft bottom)	fungiids, A. (Isopora) palifera and Pachyseris speciosa		
				7) Echinophyllia, associated with laminar Porites and/or Montipora, Pachyseris speciosa and Turbinaria reniformis?		
Thomas <i>et al.</i> , 2009	Tahiti MIS 6; MIS 3	0 to 6 m; 0 to 25 m for <i>Porites</i> ; > 20 m for <i>Montinora</i> .	Reef front to forereef	8) Small fungiids (incl. <i>Cycloseris</i> , <i>Diaseris</i> ?), associated with <i>Favia</i> , <i>Montastrea</i> and <i>Porites</i> Tabular <i>Acropora</i> and massive <i>Porites</i> ; <i>Montipora</i> and foliaceous <i>Pachyseris</i>		Montaggioni, 2005
Hongo & Kayanne, 2010	Ishigaki Island, Ryukyu Islands Holocene	Pachyseris Ibaruma reef: A. digitifera: 4.8 ± 2.5 m and G. retiformis: $5.6 \pm$ 1.5 m Fukido reef: A. digitifera: 2.5 m, G. retiformis: 2.3	Barrier reef crest	Ibaruma reef: P. verrucosa, A. hyacinthus, A. digitifera, G. retiformis, Leptoria sp. cf. L. phrygia, Coeloseris mayeri, S. recta, L. corymbosa, C. serailia and F. chinensis; Fukido reef: A. nasuta, A. pulchra, A. digitifera, A. aspera, G. retiformis, P. lutea, Montipora peltiformis and P. ryukyuensis		Own observations in living reef
Andersen <i>et al.</i> , 2010a	Henderson Island, equatorial Pacific MIS 7.5 and MIS 9.1 and 9.3	0 to 6 m when Acropora; 0 to 15 only Faviids and Porites	Reef crest and patch reef lagoon	Faviidae and Porites, Montastrea, with branching Acropora		Cabioch <i>et al.</i> , 1999; Montaggioni, 2005
Bard <i>et al.</i> , 2010	Tahiti Deglacial	< 6 m for Acropora and Pocillopora, < 10 to 20 m for Porites and Faviidae	Barrier reef	Acropora (some of them A. danai and A. robusta/danai) and Pocillopora (some P. cf. verrucosa), M. annuligera, Porites and Faviidae		no references
Iryu <i>et al.,</i> 2010	Tahiti (Maraa) MIS 6 to 5e	1) 6 to 15 m 2) Deep forereef A) 0 to 20 m B) 0 to 25 m C) 35 to 50 m D) Deep forereef		 Massive <i>Porites</i> Branching <i>Porites</i> and encrusting agariciids 	 A) H. onkodes B) Neogoniolithon myriocarpum or L. insipidum with absence of H. onkodes C) Absence of H. onkodes, N. myriocarpum and L. insipidum 	Lemoine, 1911; Foslie, 1929; Lee 1967; Gordon <i>et al.</i> , 1976; Adey <i>et al.</i> , 1982; Iryu & Matsuda, 1988; Iryu, 1992; Verheij, 1994; Cabioch <i>et al.</i> , 1999;

Baba, 2000; Payri et

					D) Rhodoliths and absence of <i>H. onkodes</i> , <i>N.</i> <i>myriocarpum</i> and <i>L.</i> <i>insipidum</i>	<i>al.</i> , 2000; Ringeltaube & Harvey, 2000; Montaggioni <i>et al.</i> , 1997
Shen <i>et al.</i> , 2010	Luzon, Philippines Holocene	0 to 6 m	 Outer reef flat, upper reef slope or patch reef, high energy; Deeper and calmer water in lagoon or forereef 	 Robust-branching coral facies: A. robusta, A. digitifera and P. eydouxi; Domal/Heliopora subfacies: domal corals, such as Porites and Faviids as well as Heliopora 		Nakamori <i>et al.</i> , 1995; Kayanne <i>et al.</i> , 2002; Montaggioni, 2005; Wallace, 1999; Veron, 2000
Abbey <i>et al.</i> , 2011	Tahiti (Maraa, Tiarei) Deglacial	0 to 10 m, high energy	Fringing to barrier	cA1: massive and encrusting <i>Montipora</i> (e.g., <i>M. aequituberculata, M. tuberculosa</i>), robust <i>Pocillopora</i> (e.g., <i>P. eydouxi</i>), branching <i>Porites</i> and associated encrusting <i>Porites</i> and Faviids (e.g., <i>M. curta</i>)	CCA: aA1 thick <i>H. onkodes</i> (locally <i>Mastophora</i> species) Vermetids	Pirazzoli & Montaggioni, 1988; Montaggioni <i>et al.</i> , 1997; Sugihara <i>et al.</i> , 2006; Bouchon, 1985; Cabioch <i>et al.</i> , 1999
		0 to 25 m, turbid 0 to 20 m for CCA		cA2: massive Porites, Montipora, associated branching Porites, Acropora and Pocillopora	CCA: aA2 thin <i>H. onkodes,</i> <i>Hydrolithon gardineri,</i> <i>Pneophyllum conicum</i> Vermetids	Moberg <i>et al.</i> , 1997; Veron, 2000
		0 to 30 m		cA3: branching <i>Porites</i> (e.g., <i>P. lichen/rus</i>), <i>Pocillopora</i> , <i>P. maldivensis</i> , associated encrusting <i>Porites</i> , <i>Montipora</i> (e.g., <i>M.</i> <i>tuberculosa</i> , <i>M. aequituberculata</i>) and Faviids (e.g., <i>L. transversa</i>).	Vermetids	Montaggioni, 2005; Cabioch <i>et al.</i> , 1999; Bouchon, 1985
		0 to 10 m		cA4: Robust-branching <i>Acropora</i> and associated <i>Pocillopora</i>	CCA: aA1 thick <i>H. onkodes</i> (locally <i>Mastophora</i> species)	Done, 1982; Montaggioni & Faure, 1997; Cabioch et al., 1999; Bouchon, 1985; Sugihara et al., 2006; Pirazzoli & Montaggioni, 1988; Montaggioni & Camoin, 1993; Montaggioni et al., 1997
		0 to 20 m		cA5: tabular and rare branching <i>Acropora</i> (e.g., <i>A. secale</i>), branching and encrusting <i>Porites</i> ,	Vermetids	Done, 1982; Montaggioni, 2005;

				Montipora (e.g., M. cf. aequituberculata, M. venosa), Faviids (e.g., L. cf. transversa), Agariciids (e.g., P. varians) and associated Pocillopora.		Sugihara <i>et al.</i> , 2006; Montaggioni <i>et al.</i> , 1997; Cabioch <i>et al.</i> , 1999
		0 to 30 m		cA6: branching and encrusting <i>Porites</i> (e.g., <i>P.</i> <i>lobata</i>), <i>Montipora</i> (e.g., <i>M. aequituberculata</i> , <i>M. tuberculosa</i> , <i>M. verrucosa</i>), Agariciids (e.g., <i>P. maldivensis</i> , <i>P. varians</i> , rare <i>Pachyseris</i> <i>speciosa</i>), Faviids (e.g., <i>L. transversa</i> , <i>M.</i> <i>curta</i>). Tabular <i>Acropora</i> (e.g., <i>A. cytherea</i>) and massive <i>Porites</i> (Maraa)	CCA: aA3 Mesophyllum erubescens (depth range 15 to 30 m), Lithophyllum prototypum	Bouchon, 1985; Cabioch <i>et al.</i> , 1999; Keats <i>et al.</i> , 1996
		> 20 m, turbid		cA7: <i>Montipora</i> (e.g., <i>M. tuberculosa</i>), Agariciids (e.g., <i>P. varians</i> , <i>Pachyseris</i> sp., Leptoseris solida), Faviids (e.g., <i>M. curta</i> , <i>L. transversa</i>)	CCA: aA4 Mesophyllum funafutiense, Lithoporella	Montaggioni, 2005; Sugihara <i>et al.</i> , 2006; Bouchon, 1985
Hongo & Kayanne, 2011	Palau Islands and Yoron Island, in Ryukyu Islands Holocene	0 to 7 m	High energy, low turbidity and reef crest and upper reef slope	Corymbose and tabular Acropora (A. digitifera) and robust Acropora (A. robusta/A. abrotanoides) with associated arborescent Acropora, A. hyacinthus, also I. palifera, P. damicornis, Pocillopora sp. Cyphastrea, Montipora	CCA	Cabioch <i>et al.</i> , 1999; Done, 1982; Montaggioni & Faure, 1997; Sugihara <i>et al.</i> , 2003; Hongo & Kayanne, 2010b
		0 to 20 m	Low to moderate energy, low turbidity and inner reef slope or leeward reef slope	Arborescent Acropora (A. muricata/A. intermedia) with associated P. damicornis, Porites, Lobophyllia	CCA	Done, 1982; Hongo & Kayanne, 2010b; Montaggioni, 2005; Nakamori, 1986
		0 to 5 m	Low energy, high turbidity and shallow lagoon or lagoon	<i>In situ</i> massive <i>Porites</i> sp. with associated <i>H. coerulea</i> fragments		Montaggioni, 2005
Faichney <i>et al.</i> , 2011	Maui Nui Complex, Middle Pleistocene	1) < 10 m 2) 20 to 80 m	1) Reef framework 2) Forereef slope	 P. compressa and Porites sp. Thin foliaceous Leptoseris. 	1) CCA: thick <i>H. onkodes,</i> <i>L. prototypum</i> and <i>Neogonolithon</i> 2) CCA: thin <i>L. prototypum, L.</i> <i>pustulatum, Spongites</i> sp. and <i>L. prolifer.</i>	Engels <i>et al.</i> , 2004; Grigg, 2006; Kahng & Kelley, 2007; Adey <i>et al.</i> , 1982; Cabioch <i>et al.</i> 1999
Deschamps <i>et al.</i> , 2012	Tahiti Deglacial	1) < 10 m 2) < 5 m 3) < 10 m for corals, < 5 m with vermetids 4) < 5 m	Fringing reef	 Robust-branching <i>Pocillopora</i> Encrusting <i>Montipora</i> associated <i>Montipora, Pocillopora</i> in coral assemblage <i>Pocillopora</i> Branching <i>Porites</i> 	 2) Vermetids 3) Vermetids 4) With and without vermetids 	Cabioch <i>et al.</i> 1999

Abbey et al., 2013	Great Barrier Reef Deglacial and	5) 0 to 20 m < 60 m (45 to 60 m)	Fore-reef slope	1. Massive/tabular corals: flat and thick <i>Porites</i> , <i>Montipora</i> and faviids	CCA: dominated by lithophylloids and secondary or minor mastophoroids.	Reed, 1985; Bak <i>et</i> <i>al.</i> , 2005; Bridge <i>et</i> <i>al.</i> , 2011a
	Holocene	60 to 100 m	Fore-reef slope	2. Platy/encrusting corals: thinner (< 2 cm), platy and encrusting <i>Porites</i> , <i>Montipora</i> and agariciids.	CCA: dominated by melobesioids and <i>Sporolithon</i>	,
		> 100 m	Fore-reef slope	3. Octocorals	Algal-foraminiferal communities. <i>Peyssonnelia</i> and <i>Sporolithon</i> , no lithophylloids and mastophoroids.	Bridge et al., 2012
Guillaume <i>et al.,</i> 2013	MIS 5e	1.5 m	Reef flat	Isopora palifera, with short branched Acropora sp. and Goniastrea retiformis colonies, Leptastrea cf. transversa, Acropora cf. monticulosa, Stylocoeniella cf. guentheri		Own observation
Humblet & Iryu, 2014	Irabu Island in Ryukyu islands, Middle	1) <20 m	1) Upper reef slope	1) Isopora palifera, associated with Porites, Montipora, Acropora gr. microphthalma, Seriatopora, Goniopora and various faviids		Yamazato, 1972; Veron <i>et al.</i> , 1977; Kühlmann,
	Pleistocene	2) <20 m	2) Upper reef slope (protected?)	2) Acropora gr. microphthalma, associated with Porites, Isopora palifera, Seriatopora and		1983; Nakamori, 1986; Veron, 1992; Iryu <i>et al.</i> , 1995;
		3) >30 m	3) Lower reef slope4) Shallow	various faviids 3) <i>Porites</i> and <i>Montipora</i> , associated with		Veron, 2000; Sagawa et al., 2001; Kahng & Maragos,
		4) <30 m	unconsolidated bottom substrate	Leptoseris, Echinophyllia, Stylocoeniella, Montastrea and Cycloseris		2006; Loya & Sakai, 2008; Bridge <i>et al.</i> , 2012
		5) <30 m?	5) Shallow reef setting?	4) Fungia, associated with Porites and various faviids		
				5) Coscinarea columna, associated with Cyphastrea, Lobophyllia, agariciids and fungiids		
Dechnik <i>et al.</i> , 2015	Capricorn Bunker Group, Great Barrier Reef Holocene	0 to 10 m	High wave energy, shallow-water upper reef slopes and outer reef flats.	A1: fine-medium branching <i>Acropora</i> sp. Corymbose branching <i>Acropora</i> sp. (<i>A. humilis</i> gr., <i>latistella</i> gr., <i>nasuta</i> gr., <i>aspera</i> gr.), associated massive <i>Goniastrea</i> sp. and fine branching <i>Millepora</i>	CCA: P. onkodes assemblage. P. onkodes (= H. onkodes), minor H. reinboldii with secondary Lithophyllum sp., Spongites	Done, 1982, 1983; Veron, 1986; Cabioch <i>et al.</i> , 1999; Davies & Montaggioni, 1985;

					sp. and <i>Neogoniolithon</i> sp. Algal crusts > 5 mm, Abundant vermetids	Montaggioni, 2005; Woesik & Done, 1997; Inoue <i>et al.</i> , 2011; Hongo & Kayanne, 2011; Hamanaka <i>et al.</i> 2012; Adey, 1986; Webster & Davies, 2003.
		0 to 10 m but more often < 7 m.	Similar to A1 high energy, shallow	A2: massive/Robust <i>Isopora</i> and branching Pocilloporids. Associated branching <i>Acropora</i>	CCA and vermetids as above	
		0 to 15 m	Lower energy, semi- exposed to sheltered back reef margins, inner reef flats or deeper environments	sp. B1: predominantly massive <i>Porites</i> sp., <i>P.</i> <i>lutea</i> , <i>P. australiensis</i> and faviids (<i>Favia</i> sp., <i>Leptoria</i> sp.) with branching <i>Porites</i> sp. and laminar <i>Montipora</i> sp.		
			Low energy similar to assemblage B1, but with increased turbidity such as in lagoons and leeward inner reef flats.	B2: massive <i>Favia</i> sp. (gp 3) and <i>Goniopora</i> sp. Associated massive <i>H. microconos</i> , free living <i>Fungia</i> sp. and laminar <i>Echinopora</i> sp.		
Dutton et al., 2015	Granitic Seychelles LIG (MIS 5e) and modern	maximum 2 m, probably < 1 m for some corals	Outcrops of reef framework and rubble attcahed to granite	G. retiformis, Cyphastrea, Favites, Pavona/Leptastrea, Favia, A. gr. humilis, Stylophora		Montaggioni & Hoang, 1988
Hamanaka <i>et al.</i> , 2015	Kodakara Island, NW Pacific Holocene	0 to 5 m	High-wave energy, shallow upper-reef slope	Facies A. Thick-plate/encrusting and tabular <i>Acropora</i> spp. with well-consolidated reefal detritus. Massive and encrusting faviid corals.	Thick CCA	Iryu <i>et al.</i> , 1995; Sagawa <i>et al.</i> , 2001
		5 to 20 m	Upper reef slope	Facies B. Massive and encrusting <i>Porites</i> spp., <i>Goniopora</i> spp. and faviid corals, tabular and encrusting <i>Acropora</i> spp. and encrusting <i>Montipora</i> spp.	CCA rare	
		Approximately 5 to 30 m	Upper tomiddle reef slope	Facies C. Encrusting <i>Goniopora</i> spp., encrusting <i>Montipora</i> spp. and encrusting and foliaceous faviid corals, such as <i>Echinopora</i>		
		more than 5 m to deep	Reef slope with turbidity	spp. Facies D. Massive <i>Hydnophora</i> spp. and branching <i>Caulastrea</i> spp.		McClanahan & Obura, 1996; Perry <i>et</i> <i>al.</i> , 2009

Hongo & Montaggioni, 2015	Mauritius, Madagascar Holocene	0 to 10 m	Moderate-high wave energy, from reef crest to upper reef slope	Corymbose Acropora and robust-branching Isopora facies: A. digitifera, corymbose Acropora, A. robusta/abrotanoides complex, I. palifera, Favites sp. cf. F. chinensis, P. eydouxi, Pavona clavus, branching Porites and massive Porites, associated with other corals (Acropora retusa/gemmifera complex, Acropora sp. cf. A. humilis and D. stelligera)	Other calcareous organisms (shells, echinoids) and sand	Montaggioni & Faure, 1997; Cabioch <i>et al.</i> , 1999; Camoin <i>et al.</i> , 2004; Montaggioni, 2005; Hongo & Kayanne, 2011, Hongo, 2012
		0 to 15 m	Low-moderate wave energy, from upper reef slope to lower reef slope	Massive <i>Porites</i> facies: massive corals (massive <i>Porites</i> and <i>Cyphastrea</i> sp.), associated with other corals (branching <i>Acropora</i> and <i>D. stelligera</i>)	Other calcareous organisms (shells, echinoids) and sand	
		0 to 15 m	Low-moderate wave energy, from lower reef slope to the outermost of back reef	Arborescent Acropora facies: arborescent Acropora, associated with P. daedalea, corymbose Acropora, Cyphastrea sp., E. gemmacea, Porites and A. robusta/abrotanoides complex.		
		0 to 10 m	Low energy, middle part	Reworked foliaceous corals: P. cactus, Pavona		
Solihuddin <i>et al.</i> , 2015	Cockatoo Island, NW Australia Holocene		of back reef Subtidal reef	<i>decussata</i> and <i>Pavona frondifera</i>). Branching <i>Acropora</i> , massive domal <i>Porites</i> and other		Own observations of modern coral assemblages and zonation
Puga-Bernabeu <i>et al.</i> , 2016	Hawaii Island, MIS 6, 5e, 5a, Deglacial	1) < 10 to 15 m 2) 20 to 60 m	 Shallow reef Intermediate forereef slope 	 Porites, Acropora and Cyphastrea. Encrusting and laminar (possibly agaricid) corals. 	CCA: 1) thick <i>P. onkodes</i> and ' <i>P. conicum</i> ' 2) fruticose and warty <i>Lithophyllum acrocamptum</i> , <i>L. prolifer</i> , <i>H.</i> gr. <i>munitum</i> , <i>Hydrolithon</i> gr. <i>breviclavium</i> and <i>H.</i> <i>reinboldii</i>	Webster <i>et al.</i> , 2009
Gischler <i>et al.,</i> 2016	Bora Bora, Society Islands, Holocene	0 to 10 m 0 to 6 m with vermetids	High-energy reef flat	A1: dominated by <i>Acropora</i> with medium-sized to robust branches, including <i>A</i> . gr. <i>humilis</i> and <i>A</i> . gr. <i>robusta</i> , <i>Pocillopora</i> .	CCA: thick <i>P. onkodes</i> crusts Vermetids Foraminifera: <i>Homotrema</i>	Montaggioni <i>et al.</i> , 1997; Cabioch <i>et al.</i> , 1999; Montaggioni, 2005
		0 to 10 m	High-energy reef flat	A2: dominated by <i>Pocillopora</i> and various <i>Acropora</i> species. Encrusting <i>Porites</i> and faviids.	CCA: <i>P. onkodes</i> crusts	
		0 to 20 (10 to 20) m	Intermediate-energy fore reef, sheltered reef flat or back reef	A3: Dominated by agariciids, mainly massive to columnar <i>Gardinoseris planulata</i> and <i>Pavona maldivensis</i> .	CCA: occasional thin crusts of <i>P. onkodes</i>	Abbey <i>et al.</i> 2011; IUCN red list website

		10 to 20 m	Relatively protected setting	A4: dominated by laminar <i>Montipora</i> and fine- branched <i>Acropora</i> .	CCA: Lithophyllum gr. prototypum, Amphiroa and occasional thin crusts of P. onkodes	
	Pleistocene	> 20 m or shallower turbid	Low-energy reef settings	A5: laminar Montipora and laminar agariciids.	CCA: <i>L</i> . gr. <i>pustulatum</i> and <i>Lithoporella</i>	Abbey <i>et al.</i> 2011; Done, 1982
Siringan <i>et al.</i> , 2016	Luzon, Philippines Holocene	0 to 6 m	Reef flat	Acropora in digitate or corymbose forms, likely A. robusta or A. digitifera	-	
Solihuddin <i>et al.</i> , 2016	Buccaneer Archipelago, Kimberley, NW Australia Holocene		Subtidal to intertidal reefs	Branching <i>Acropora</i> , massive domal <i>Porites</i> and other, CCA bindstone		Own observations of modern coral assemblages and zonation
Humblet & Webster, 2017	Ribbon 5, Great Barrier Reef Pleistocene		Mid to lower reef slope habitat or turbid environment	1) Encrusting to massive <i>Porites</i> , encrusting <i>Montipora</i> and faviids (Po-Mo-Fa)		Done, 1982; Veron, 2000; Sanders & Baron-Szabo, 2005
	Pleistocene		2.1) Shallow exposedreef fronts2.2) Protected settings	2.1) Pocilloporids (Poc) – S. pistillata 2.2) S. hystrix		Done, 1982; Veron, 2000; Bridge <i>et al.</i> , 2012; Abbey <i>et al.</i> , 2013
		< 10 m	3.1) Shallow exposed reef settings3.2) Lower-energy reef slope or lagoonal settings	 3.1) Massive or branching <i>Isopora</i> and mediumto robust-branching <i>Acropora</i> (Acro- Iso) – (<i>Isopora-A.</i> gr. <i>humilis-A.</i> gr. <i>robusta</i>) 3.2) A. gr. <i>formosa</i> 		Cabioch <i>et al.</i> , 1999; Hongo & Kayanne, 2010; Hongo, 2012; Done, 1982; Oliver <i>et al.</i> , 1983; Wallace, 1999
Dechnik <i>et al.,</i> 2017	Great Barrier Reef LIG (MIS 5e) and modern	0 to 10 m (< 6 m with aA1 and vermetids)	High energy, shallow water environments, characteristic of upper reef slopes and outer reef flats	Coral Assemblage A (cAA- <i>Acropora/Isopora</i>): corymbose and robust-branching <i>Acropora</i> and <i>Isopora</i> sp. (<i>A</i> . gr 7; <i>A</i> . gr. 21; <i>A</i> . gr. 25; <i>A</i> . gr. 26; <i>I. palifera</i>) with associated branching <i>Pocillopora</i> and <i>Stylophora</i> sp.	CCA: aA1 (<i>Porolithon</i> assemblage): thick crusts (2 to 4 cm) of <i>P. onkodes</i> with secondary thinner crusts of <i>P. gardineri</i> and <i>Harveylithon</i> gr. <i>munitum</i> and minor <i>Lithophyllum</i> , <i>Neogoniolithon</i> and ' <i>Pneophyllum</i> ' species.	Done, 1982, 1983; Veron, 1986, 2000; Bouchon, 1985; Montaggioni & Faure, 1997; Montaggioni <i>et al.</i> , 1997; Cabioch <i>et al.</i> , 1999; Camoin <i>et al.</i> , 2001; Humblet <i>et al.</i> ,
		Shallow water (< 3 m)	High energy leeward reef flat margin	Coral Assemblage B (cAB- <i>Isopora/Stylophora</i>): robust-branching <i>Isopora</i> , <i>Stylophora</i> and corymbose A. gr. 21 with associated A. gr. 7 and <i>Pocillopora</i>		2009; Abbey <i>et al.</i> , 2011; Hongo & Kayanne, 2010a, 2010b; Hongo, 2012;

		0 to 30 m	Semi-exposed environment characteristic of mid- upper reef slope or shallow back reef margin	Coral Assemblage C (cAC-Faviid/Montipora): Sub-massive Montipora and massive Faviids (Favites sp., Platygyra sp.) with associated branching Porites sp.	CCA: aA2 (Lithophyllum assemblage): dominated by Lithophyllum species (L. gr. pustulatum, L. gr. prototypum, L. gr. acrocamptum, L. gr. kotschyanum) with associated Peyssonnelia sp., Mesophyllum sp. and minor Porolithon sp.	Adey et al., 1982; Adey, 1986; Braga & Davies, 1993; Littler & Littler, 2003; Cabioch, 2003 and own information
		0 to 30 m	Low energy similar to Assemblage B but with increased turbidity such as lagoons or inner reef flats	Coral Assemblage D (cAD- <i>Millepora/Goniopora</i>): branching <i>Millepora</i> sp. and massive <i>Goniopora</i> sp. with associated <i>Caulastrea</i> and <i>Galaxea</i> sp.		
		3 to 30 m	Deep turbid lagoonal environment	Coral Assemblage E (cAE- Symphyllia/Lobophyllia/Favia): massive Symphyllia, Lobophyllia and Favia sp. with associated Alveopora and Turbinaria sp.		
		0 to 10 m	High energy, shallow water upper reef slopes and outer reef flats	Coral Assemblage F (cAF- <i>Acropora/Platygyra</i>): corymbose branching <i>Acropora</i> and massive <i>Platygyra</i> sp. with associated massive <i>Porites</i> .		
Sanborn <i>et al.,</i> 2017	Big Island of Hawaii Deglacial	0 to 10 m to 20 m	Shallow-water framestone, reef crest	<i>P. compressa, P. lobata, Pocillopora</i> spp. and <i>Montipora</i> spp.	CCA: thin to thick (up to 5 cm) crusts <i>P. onkodes</i> , ' <i>P.</i> ' <i>conicum</i> and <i>L.</i> gr. <i>prototypum</i> Vermetids	Adey <i>et al.</i> , 1982; Braga & Aguirre, 2004; Webster <i>et al.</i> , 2009; Dechnik <i>et al.</i> , 2017
		20 to 60 m	Intermediate coralgal bindstone, slope	Porites spp. and Montipora spp.	CCA: fruticose L. prolifer, L. gr. prototypum, L. insipidum, 'P.' conicum and H. gr. munitum	Adey <i>et al.</i> , 1982; Braga & Aguirre, 2004; Webster <i>et al.</i> , 2009; Dechnik <i>et al.</i> , 2017
		60 to 120 m	Deep coralline algal crust, deeper slope		CCA: Lithothamnion spp., Mesophyllum spp., Sporolithon episoredion and Peyssonnelia	Webster <i>et al.</i> , 2009; Braga <i>et al.</i> , 2005
Gischler <i>et al.,</i> 2018a	Bora Bora, Society Islands, south Pacific Holocene	0 to 10 m	Fringing reef	Acropora assemblage	CCA: thick crusts of <i>P. onkodes</i>	Adey <i>et al.</i> , 1982; Cabioch <i>et al.</i> , 1999; Payri <i>et al.</i> , 2000;

		0 to 10 m	Fringing reef	Pocillopora	CCA: thick crusts of <i>P</i> . <i>onkodes</i>	Dechnik <i>et al.</i> , 2017; Gischler <i>et al.</i> , 2016
		0 to 10 m	Windward barrier reef	Acropora with medium to robust branches	CCA: Thick crusts of <i>P.</i> onkodes	
		0 to 6 m	Windward barrier reef	Acropora with medium to robust branches	CCA: thick crusts of <i>P. onkodes</i> Vermetids Foraminifera: <i>Homotrema</i>	
	Pleistocene MIS 6	0 to 10 m	Fringing reef	Pocillopora	CCA: thick crusts of <i>P</i> . <i>onkodes</i>	Adey <i>et al.</i> , 1982; Cabioch <i>et al.</i> , 1999;
		0 to 10 m	Fringing reef	Encrusting to massive <i>Porites</i> colonies	CCA: thick crusts of <i>P</i> . <i>onkodes</i>	Payri <i>et al.</i> , 2000; Dechnik <i>et al.</i> , 2017; Gischler <i>et al.</i> , 2016
Gischler <i>et al.,</i> 2018b	Rasdhoo Atoll, Maldives Pleistocene (MIS) 5e	0 to 10 m	Upper reef slope to reef flat	I. palifera, possibly A. gr. robusta, encrusting Porites sp., Echinophyllia?	CCA: P. onkodes, P. gardineri, Lithophyllum gr. cuneatum, Dawsoniolithon conicum, N. gr. fosliei, H. gr. munitum, L. gr. pustulatum, Lithophyllum sp. and Amphiroa sp.	Cabioch <i>et al.</i> , 1999; Abbey <i>et al.</i> , 2011; Dechnik <i>et al.</i> , 2017; Ciarapica & Passeri, 1993
Shen <i>et al.</i> , 2018	Lutao Holocene	0.5 to 1.5 m	Edge of reef flat or upper reef slope	Encrusting or thick branching coral <i>I. palifera</i> , occasional massive <i>Leptoria</i> , <i>Favia</i> and <i>Favites</i>		Dai & Horng, 2009; Inoue <i>et al.</i> , 2011
Vyverberg <i>et al.,</i> 2018	Granitic Seychelles LIG (MIS 5e)	0 to 2 m	Outcrops of reef framework and rubble attcahed to granite	Assemblage A: massive/sub-massive and encrusting <i>Goniastrea</i> (<i>G. minuta, G. aspera</i> and most commonly <i>G. retiformis</i>), with the rare occurrence of other taxa		Taylor, 1968; Lewis, 1968; Braithwaite, 1971; Rosen, 1971; Veron, 2000
		1 to 2 m.		Assemblage B: Faviidae. massive to sub- massive <i>Favites</i> sp. and <i>Favia</i> sp., commonly <i>Stylophora</i> sp. and <i>Cyphastrea</i> sp. Rare massive <i>Platygyra</i> sp., <i>Porites</i> sp.		
		0 to 6m		Assemblage C: draping, encrusting plates of <i>Siderastrea</i> sp. and encrusting platy <i>Pavona</i> sp. with less common platy <i>Favites</i> sp. and <i>Millepora</i> sp.		
		0 to 6m		Assemblage D: encrusting <i>Porites</i> sp. and encrusting faviids with coralline algae (coralgal encrusting complex)		
Webster <i>et al.</i> , 2018	Great Barrier Reef	Shallow, high energy reef edge < 10 m;		Assemblage A (mIsoAcro). Massive/robust- branching <i>Isopora</i> and corymbose/digitate <i>A</i> . gr. <i>humilis</i> .	CCA: aA1 assemblage: thick cm-scale crusts of <i>P</i> .	Done, 1982, 1983; Cabioch <i>et al.</i> , 1999; Abbey <i>et al.</i> , 2011

	Late glacial to deglacial	< 5 m with aA1 CCA and vermetide		onkodes Abundant vermetids	
		Protected reef down to 20 m; <10 m if associated with thick crusts of aA1 CCA and	Assemblage B (bSeriAcro). Fine branching <i>Seriatopora</i> (<i>S. hystrix</i> ?) and diverse <i>Acropora</i> sp., often associated with <i>Isopora</i>	CCA: aA2 assemblage: thin <i>P. onkodes, P. gardineri, H.</i> gr. <i>munitum</i>	
		Vermends. Protected to turbid reefs to 30 m-deep; 0 to 10 m with aA1 CCA and vermetids	Assemblage C (meMer). Massive and encrusting meruliniids (<i>Dipsastrea, Cyphastrea,</i> <i>Platygyra</i>)		Cabioch <i>et al.</i> , 1999; Done, 1983; Veron, 1986
		Deeper forereef slope >20 m to 100 m, when absence of <i>P. onkodes</i> and vermetids	Assemblage D (mP). Massive Porites	CCA: aA3 assemblage: thin crusts mainly <i>Mesophyllum</i> and <i>Lithothamnion</i> , with no records of <i>P. onkodes</i>	Cabioch <i>et al.</i> , 1999; Abbey <i>et al.</i> , 2011; Bridge <i>et al.</i> , 2011a; Bridge <i>et al.</i> , 2011b; Bridge <i>et al.</i> , 2012;
		Deeper forereef slope >20 m to 100 m, when absence of <i>P. onkodes</i> and vermetids	Assemblage E (esmPM). Encrusting and submassive <i>Porites</i> and <i>Montipora</i>		Abbey <i>et al.</i> , 2013
		Deeper forereef slope >20 m to 100 m	Assemblage F (eAg). Encrusting and foliaceous agariciids (<i>Leptoseris</i> , <i>P. speciosa</i>).		
Yokoyama <i>et al.</i> , 2018	Great Barrier Reef Late glacial to deglacial	0 to 5 m	cA. Massive/robust-branching <i>Isopora</i> and corymbose <i>A</i> . gr. <i>humilis</i>	CCA: aA1. P. onkodes Vermetids	Webster et al., 2018
	6	0 to 10 m	cB. Branching <i>Seriatopora</i> and <i>Acropora</i> sp.	CCA: aA1. Porolithon onkodes	
		10 to 20 m	cC. Massive/encrusting meruliniids;	CCA: aA2. Thin <i>P. onkodes,</i> <i>Porolithon gardineri, H.</i> gr. <i>munitum</i>	
		> 20 m	cD. Encrusting to massive <i>Porites</i> and encrusting <i>Montipora</i>	CCA: aA3. Mesophyllum, Lithothamnion	

Humblet <i>et al.,</i> 2019	Great Barrier Reef Late glacial to deglacial	0 to 5 m vermetid (0 to 10 m) coralgal	Fringing reef, barrier reef	Assemblage cA1. Massive <i>Isopora</i> and branching corymbose to digitate <i>A</i> . gr. <i>humilis</i> associated occasionally with <i>A</i> . <i>monticulosa</i> and encrusting <i>Porites</i> .	CCA: aA1. Thick crusts of <i>P</i> . gr. <i>onkodes</i> Vermetid gastropods	Cabioch <i>et al.</i> , 1999; Done, 1982, 1983; Veron, 1986; Montaggioni & Braithwaite, 2009; Dechnik <i>et al.</i> , 2015; Gischler <i>et al.</i> 2016;
		0 to 5 m vermetid (0 to 10 m) aA1	Fringing reef, barrier reef	Assemblage cA2. Robustly branching and massive <i>Isopora</i> . Accessory constituents are <i>A</i> . gr. <i>humilis</i> and <i>A</i> . gr. <i>robusta</i> .	CCA: aA1. Thick crusts of <i>P</i> . gr. <i>onkodes</i> Vermetid gastropods	Montaggioni, 2005
		0 to 10 m aA1 and vermetids; 0 to 20 to 40 m coral	Fringing reef	Assemblage characterised by massive <i>Isopora</i> and branching <i>Acropora</i> species. Accessory encrusting <i>Porites</i> .	CCA: aA1. Thick crusts of <i>P</i> . gr. <i>onkodes</i> Vermetid gastropods	Done, 1982; Muir <i>et al.</i> , 2015
		0 to 10 m aA1 and vermetids; 0 to 10 m if <i>Isopora</i> present; 0 to 20 m coral	Fringing reef	Assemblage cB. Branching <i>Seriatopora</i> and a diverse <i>Acropora</i> species with branch diameters ≤1 cm. Associated massive <i>Isopora</i> , branching <i>Stylophora</i> , encrusting <i>Porites</i> and <i>Montipora</i> , massive <i>Tubipora</i> and minor encrusting to massive merulinids.	CCA: aA1. Thick crusts of <i>P</i> . gr. <i>onkodes</i> Vermetid gastropods	Done, 1982; Bridge et al., 2012
		0 to 10 m aA1 and vermetids; 0 to 30 m coral	Fringing reef, barrier reef	Assemblage cC. Encrusting to massive merulinids, mainly <i>Dipsastraea</i> and less commonly <i>Cyphastrea</i> and <i>Platygyra</i> . Associated finely branching <i>Acropora</i> , encrusting <i>Porites</i> and <i>Montipora</i> and <i>Hydnophora</i> .	CCA: aA1. Thick crusts of <i>P</i> . gr. <i>onkodes</i> Vermetid gastropods	Done, 1982; Cabioch <i>et al.</i> , 1999; Veron, 1986; Perry <i>et al.</i> , 2009
		0 to 60 m coral; 0 to 20 m aA2	Fringing reef, barrier reef	Assemblage cD. Massive <i>Porites</i> (5 to 20 cm- thick) associated mainly with encrusting <i>Montipora</i> and encrusting merulinids.	CCA: aA2. Thin <i>P. onkodes, P. gardineri, H.</i> gr. <i>munitum</i>	Veron & Pichon, 1982; Done, 1982; Potts <i>et al.</i> , 1985; Bridge <i>et al.</i> , 2012
		> 20 to 100 m aA3; shallower turbid or steep slopes	Fringing reef, barrier reef	Assemblage cE. Encrusting <i>Montipora</i> and <i>Porites</i> associated with encrusting merulinids (mainly <i>Cyphastrea</i>) and small finely branching <i>Acropora</i> colonies.	CCA: aA3. Knobby Melyvonnea gr. erubescens, thin crusts of Mesophyllum and Lithothamnion	Abbey <i>et al.</i> , 2013; Bridge <i>et al.</i> , 2012; Done, 1982; Browne <i>et al.</i> , 2012
		> 20 m aA3	Fringing reef	Assemblage cF. Agaricuds (e.g. <i>L.</i> gr. <i>yabel</i> , <i>P. speciosa</i>) associated with encrusting <i>Montipora</i> and <i>Porites</i> .		
Jaramillo-Vogel et al., 2019	Danakil Depression, Afar, Ethiopia MIS 7, MIS 5	intertidal reef flat and shallow subtidal	Red algal framestone (patches, biostromes) on top of corals		CCA: L. gr. kotschyanum with minor L. gr. prototypum, L. gr. pustulatum and P. onkodes	Rasser & Piller, 1997

Montaggioni & West Indian Martin-Garin, Islands Holocene 2020	West Indian Islands Holocene	< 5 to 6 m	Shallow, high-energy	Robust-branching type. A. robusta– abratanoides group, A. (I.) palifera, A. humilis, A. digitifera, together with P. verrucosa, P. eydouxi, P. damicornis.	CCA: thick veneers (up to 2 to 4 cm) over corals. <i>H</i> . cf. <i>onkodes</i> , <i>D</i> . cf. <i>tessellatum</i> and <i>N</i> . cf. <i>fosliei</i> .	Pirazzoli & Montaggioni, 1988; Montaggioni & Faure, 1997; Cabioch <i>et al.</i> , 1999; Montaggioni 2005
		0 to 20 m	Inner, low to medium water-energy zones, rarely on reef edge Back reef protected	Tabulate and thinly branching coral facies. A. hyacinthus, A. cytherea, A. muricata, M. digitata. Foliaceous coral facies. P. divaricata, P. decussata, P. cactus, M. foliosa.	CCA: Lithophyllum, M. cf. prolifer, Dermatolithon and more rarely, H. cf. onkodes. CCA: thin veeners over foliaceous coral of Mesophyllum and Lithoporella	
		0 to 10 to 15 m	Semi-exposed to protected settings	Massive (domal) coral facies. P. lutea, P. lobata, G. retiformis, G. fascicularis, F. stelligera, F. pallida, L. phrygia, G. pectinata, Leptastrea sp., P. daedalea.	CCA: thin crusts of <i>H</i> . cf. <i>onkodes</i> or <i>D</i> . cf. <i>tessellatum</i>	Cabioch <i>et al.</i> , 1999; Montaggioni, 2005
		15 to 25 m	Low-energy	Encrusting- laminar coral facies. <i>E. gemmacea</i> , <i>E. aspera</i> , <i>P. speciosa</i> .	CCA: thin veeners of <i>Mesophyllum</i> and <i>Lithophyllum</i> .	Montaggioni, 2005
Hallmann <i>et al.,</i> 2020	Central South Pacific Holocene	A few tens of centimetres to 1 m and up to 1.5 m- deep in areas typified by a greater tidal range	High-energy reef flat	Reef flat units: robust-branching <i>Acropora</i> and <i>Pocillopora</i> , massive <i>Porites</i> and foliaceous merulinids, subordinate <i>Millepora</i> and solitary <i>Fungia</i> .	CCA: thick crusts of Porolithon gr. onkodes	
Sanborn et al., 2020	One Tree Reef, Southern Great Barrier Reef Holocene	< 10 m	High-energy and clear water	Coral A1. Massive or columnar <i>Isopora</i> spp. with tabular or corymbose <i>Acropora</i> spp. Secondary encrusting <i>Montipora</i> spp. and <i>Porites</i> spp., <i>Stylophora</i> spp. and <i>Pocillopora</i> spp.	CCA 1. P. gr. onkodes. Secondary Neogoniolithon spp., H. gr. munitum, Hydrolithon sp., L. gr. pustulatum, L. gr. prototypum, L. gr. kotschyanum and D. conicum Vermetid gastropods.	Done, 1983; Davies & Montaggioni, 1985; Veron, 1986; Montaggioni, 2005; Hongo and Kayanne, 2011; Inoue <i>et al.</i> , 2011; Dechnik <i>et al.</i> , 2015, 2017; Adey, 1986;
		< 10 to 15 m	High-energy	Coral A2. Corymbose or staghorn <i>Acropora</i> spp. Secondary tabular <i>Acropora</i> spp., encrusting <i>Montipora</i> spp. and <i>Porites</i> spp., <i>Stylophora</i> spp. and <i>Pocillopora</i> spp.	CCA 1 Vermetid gastropods	Braga & Davies, 1993; Cabioch <i>et al.</i> , 1999

	< 10 m	High-energy	Coral A3. Branching <i>Pocillopora</i> . Secondary <i>Seriatopora</i> spp. and <i>Acropora</i> spp.	CCA 1 Vermetid gastropods.	Done, 1982; Fan & Dai, 1996; Hongo & Kayanne, 2011; Pratchett <i>et al.</i> , 2015; Humblet & Webster, 2017
	0 to 15 m	Lower-energy, semi-exposed to sheltered environments and turbid water	Coral B1. Encrusting to submassive or branching <i>Porites</i> spp. and/or encrusting to columnar <i>Montipora</i> spp. Secondary encrusting <i>Cyphastrea</i> spp. and <i>Pavona</i> spp., <i>Symphyllia</i> spp., <i>Lobophyllia</i> spp., corymbose <i>Acropora</i> spp., <i>Galaxea</i> spp. and encrusting <i>Millepora</i> spp.	CCA 2. D. conicum, H. gr. munitum, L. gr. prototypum, L. gr. kotschyanum and L. gr. acrocamptum	Done, 1982; Potts, 1985; Stafford- Smith, 1993; Cabioch <i>et al.</i> , 1999; Montaggioni, 2005; Sanders & Baron- Szabo, 2005; Hongo & Kayanne, 2011; Browne <i>et al.</i> , 2012; Erftemeijer <i>et al.</i> , 2012; Humblet & Webster, 2017; Dechnik <i>et al.</i> , 2017; Precht, 2019
	0 to 15 m	Lower-energy, semi-exposed to sheltered environments and turbid water	Coral B2. Encrusting to massive <i>Goniopora</i> spp. Encrusting to submassive <i>Goniastrea</i> spp., <i>Cyphastrea</i> spp., <i>Favites</i> spp., <i>Dipsastraea</i> spp., <i>Leptoria</i> spp., tabular <i>Acropora</i> spp., encrusting <i>Montipora</i> spp. and <i>Porites</i> spp.	CCA 2	Bull, 1982; Done, 1982, 1983; Stafford- Smith, 1993; Browne <i>et al.</i> , 2012; Erftemeijer <i>et</i>
	0 to 15 m	Lower-energy, semi-exposed to sheltered environments and turbid water	Coral B3. Massive Merulinidae, particularly Goniastrea spp., Platygyra spp., Dipsastraea spp., Favites spp., and Leptoria spp.	CCA 2	al., 2012; Dechnik et al., 2015, 2017
	>20 m	Deep and/or in low light		CCA 3. <i>M</i> . gr. <i>funafutiense</i> , <i>M</i> . gr. <i>erubescens</i> , and <i>Peyssonnelia</i> sp. Secondary <i>Lithoporella</i> sp., <i>Lithothamnion</i> spp. and <i>Spongites</i> sp.	Cabioch <i>et al.</i> , 1999; Davies <i>et al.</i> , 2004; Abbey <i>et al.</i> , 2011; Dechnik <i>et al.</i> , 2017
Southern Cook Islands, Pleistocene	 1) Shallow, high energy 2) Deeper 0 to 30 m 	Reef terraces		1) Porolithon gr. onkodes, Harveylithon gr. munitum, Lithophyllum gr. pustulatum, Lithophyllum gr.	

Gischler *et al*., This volume

Webster <i>et al.</i> , This volume	northwest shelf of Australia, MIS 3 to Holocene	C1, C3, CCA A1 and foraminifer Assemblage 1 and abundant vermetids < 10 m C2, C4, CCA A2 and foraminifer Assemblage 2 is 0 to 30 m		 C1. Robust-branching (corymbose/digitate) Acropora (i.e., A. humilis, A. monticulosa, A. gemmifera), branching S. pistillata and Porites (P. cylindrica, P. nigrescens), I. palifera and Montipora, with rare massive Goniastrea, Goniopora and Cyphastrea spp. C2. Corymbose branching Acropora spp. and merulinids (Dipsastrea gr. 2), Montipora and Seriatopora C3. Corymbose/digitate Acropora, such as A. digitifera and robust-branching species (A. gr. 21 - A. humilis, A. gemmifera, A. monticulosa) and massive Porites (gr. 1 - P. lutea, P. australiensis), with merulinid Dipsastrea gr. 1) C4. Columnar P. clavus with branching digitate Acropora, Pocillopora, encrusting Montipora and Pavona explanulata 	kotschyanum and Lithophyllum gr. prototypum 2) Lithothamnion, Mesophyllum, Neogoniolithon, Spongites CCA: A1. Thick crusts of P. gr. onkodes, Lithophyllum gr. cuneatum, L. gr. pustulatum, L. gr. prototypum and Harveylithon spp. A2. L. gr. kotschyanum, L. gr. acrocamptum and L. gr. pustulatum, Harveylithon gr. rupestre, H. gr. munitum, thin crusts of Hydrolithon sp. A3. Lithothamnion spp. thin crusts of L. gr. pustulatum, Lithoporella sp. and Peyssonnelia Foraminifera: Assemblage 1. Schlumbergerella floresiana Amphisorus spp.and Calcarina hispida gr. and Peneroplis spp. Assemblage 2. Amphistegina radiata and Heterostegina depressa Vermetid gastropods	Adey <i>et al.</i> , 1982; Verheij, 1994; Iryu <i>et al.</i> , 1995; Cabioch <i>et al.</i> , 1999; <i>Payri et al.</i> , 2000; Dechnik et al., 2001; Kospartov <i>et al.</i> , 2006; Richards <i>et al.</i> , 2009; <i>Ceccarelli et al.</i> , 2009; <i>Ceccarelli et al.</i> , 2011; Twiggs & Collins, 2010; Glenn & Collins, 2005; Renema & Troelstra, 2001
Harper <i>et al.</i> , This volume	southeast Papua New Guinea Peninsula outer shelf Late glacial to deglacial	1) Shallow < 5 m 2) 0 to 20 m (0 to 10 m) 3) > 20 m	 1) Shallow reef crest 2) Shallow fore reef 3) Deeper fore reef 	 G. retiformis framework Debris of Acropora, Astreopora, Favites abdita, Stylophora and Galaxaura Debris of Echinophyllia, Montipora and Porites 	Foraminifera: Marginopora vertebralis	Webster <i>et al.</i> , 1998; Veron, 2000; Montaggioni, 2005; Montaggioni & Braithwaite, 2009 Dutton <i>et al.</i> , 2015; Vyverberg <i>et al.</i> , 2018

REFERENCES

- Abbey, E., Webster, J.M., Braga, J.C., Sugihara, K., Wallace, C.C., Iryu, Y., Potts, D.C., Done, T.J., Camoin, G.F. and Seard, C. (2011) Variation in deglacial coralgal assemblages and their paleoenvironmental significance: IODP Expedition 310, "Tahiti Sea Level." *Global Planet. Change*, **76**, 1–15.
- Abbey, E., Webster, J.M., Braga, J.C., Jacobsen, G.E., Thorogood, G., Thomas, A.L., Camoin, G.F., Reimer, P.J. and Potts, D.C. (2013) Deglacial mesophotic reef demise on the Great Barrier Reef. *Palaeogeogr. Palaeoclimatol. Palaeoecol.*, **392**, 473–494.
- Abdul, N.A. (2017) Late Deglacial (13.9 TO 8 KYR B.P.) records from the reef crest coral Acropora palmata in Barbados. PhD Thesis, Rutgers
- Abdul, N.A., Mortlock, R.A., Wright, J.D. and Fairbanks, R.G. (2016) Younger Dryas Sea-Level and Meltwater Pulse 1B Recorded in Barbados Reef-Crest Coral *Acropora palmata*. *Paleoceanography*, **31**, 330–344.
- Adey, W.H. (1979) Crustose coralline algae as microenvironmental indicators for the Tertiary. In: *Historical Biogeography, Plate Tectonics and the Changing Environment* (Eds A. Boucot and J. Gray), *Oregon State University Press*, Corvallis, 459–464.
- Adey, W.H. (1986) Coralline algae as indicators of sea-level. In: *Sea-Level Research: a manual for the collection and evaluation of data* (Ed. O. van de Plassche), *Springer Netherlands*, Dordrecht, 229–280.
- Adey, W.H., Townsend, R. and Boykins, W. (1982) The Crustose Coralline Algae (Rhodophyta: Corallinaceae) of the Hawaiian Islands. *Smithsonian Institution Press*, Washington, D.C., 74 pp.
- Amado-Filho, G.M., Bahia, R.G., Mariath, R., Jesionek, M.B., Moura, R.L., Bastos, A.C., Pereira-Filho, G.H. and Francini-Filho, R.B. (2018) Spatial and temporal dynamics of the abundance of crustose calcareous algae on the southernmost coral reefs of the western Atlantic (Abrolhos Bank, Brazil). *Algae*, 33, 85–99.
- Andersen, M.B., Stirling, C.H., Potter, E.-K., Halliday, A.N., Blake, S.G., McCulloch, M.T., Ayling, B.F. and O'Leary, M. (2008) Highprecision U-series measurements of more than 500,000 year old fossil corals. *Earth Planet. Sci. Lett.*, **265**, 229–245.

- Andersen, M.B., Stirling, C.H., Potter, E.-K., Halliday, A.N., Blake, S.G., McCulloch, M.T., Ayling, B.F. and O'Leary, M.J. (2010) The timing of sea-level high-stands during Marine Isotope Stages 7.5 and 9: Constraints from the uranium-series dating of fossil corals from Henderson Island. *Geochim. Cosmochim. Acta*, 74, 3598–3620.
- Angulo, R.J., Lessa, G.C. and Souza, M.C. de (2006) A critical review of mid- to late-Holocene sea-level fluctuations on the eastern Brazilian coastline. *Quatern. Sci. Rev.*, 25, 486–506.
- Baba, M. (2000) An Identification Guide of Coralline Red Algae in Japan. Report Mar. Ecol. Res. Inst., 1, 1-68.
- Bablet, J.-P., Gout, B. and Goutière, G. (1995) Les atolls de Mururoa et de Fangataufa (Polynésie Française). III Le milieu vivant et son évolution. *CEA/DAM, DIRCEN*, Paris.
- Bak, R., Nieuwland, G. and Meesters, E. (2005) Coral reef crisis in deep and shallow reefs: 30 years of constancy and change in reefs of Curaçao and Bonaire. *Coral Reefs*, 24, 475–479.
- Baker, P.A. and Weber, J.N. (1975) Coral growth rate: variation with depth. Earth Planet. Sci. Lett., 27, 57-61.
- Banerjee, P.K. (2000) Holocene and Late Pleistocene relative sea level fluctuations along the east coast of India. Mar. Geol., 167, 243–260.
- Bard, E., Hamelin, B., Arnold, M., Montaggioni, L., Cabioch, G., Faure, G. and Rougerie, F. (1996b) Deglacial sea-level record from Tahiti corals and the timing of global meltwater discharge. *Nature*, **382**, 241–244.
- Bard, E., Hamelin, B. and Delanghe-Sabatier, D. (2010) Deglacial meltwater pulse 1B and Younger Dryas sea levels revisited with boreholes at Tahiti. *Science*, **327**, 1235–1237.
- Bard, E., Hamelin, B. and Fairbanks, R.G. (1990a) U-Th ages obtained by mass spectrometry in corals from Barbados: sea level during the past 130,000 years. *Nature*, **346**, 456–458.
- Bard, E., Hamelin, B., Fairbanks, R.G. and Zindler, A. (1990b) Calibration of the 14 C timescale over the past 30,000 years using mass spectrometric U–Th ages from Barbados corals. *Nature*, **345**, 405–410.
- Bard, E., Hamelin, B., Deschamps, P. and Camion, C. (2016) Comment on "Younger Dryas sea level and meltwaterpulse 1B recorded in Barbados reefalcrest coral *Acropora palmata* by N. A. Abdul *et al. Paleoceanography*, **31**, 1603–1608.

- Bard, E., Jouannic, C., Hamelin, B., Pirazzoli, P., Arnold, M., Faure, G., Sumosusastro, P. and Syaefudin (1996) Pleistocene sea levels and tectonic uplift based on dating of corals from Sumba Island, Indonesia. *Geophys. Res. Lett.*, 23, 1473–1476.
- Blanchon, P. (1995) Controls on modern reef development around Grand Cayman [unpublished Ph.D. thesis]. PhD Thesis, University of Alberta
- Blanchon, P. and Eisenhauer, A. (2001) Multi-stage reef development on Barbados during the Last Interglaciation. *Quatern. Sci. Rev.*, 20, 1093–1112.
- Blanchon, P., Eisenhauer, A., Fietzke, J. and Liebetrau, V. (2009) Rapid sea-level rise and reef back-stepping at the close of the last interglacial highstand. *Nature*, **458**, 881–884.
- Blanchon, P., Jones, B. and Ford, D.C. (2002) Discovery of a submerged relic reef and shoreline off Grand Cayman: further support for an early Holocene jump in sea level. *Sed. Geol.*, 147, 253–270.
- Blanchon, P. and Jones, B. (1995) Marine-planation terraces on the shelf around Grand Cayman: a result of stepped Holocene sea-level rise. *J. Coastal Res.*, **11**, 1–33.
- Blanchon, P., Jones, B. and Kalbfleisch, W. (1997) Anatomy of a fringing reef around Grand Cayman: Storm rubble, not coral framework. J. Sed. Res., 67, 1–16.
- Blanchon, P. and Perry, C.T. (2004) Taphonomic differentiation of *Acropora palmata* facies in cores from Campeche Bank Reefs, Gulf of Mexico. *Sedimentology*, **51**, 53–76.
- Bloom, A.L., Broecker, W.A., Chappell, J.M.A., Matthews, R.K. and Mesolella, K.J. (1974) Quaternary sea level fluctuations on a tectonic coast: new 230Th/234U dates from the Huon Peninsula, New Guinea. *Quatern. Res.*, 4, 185–205.
- Borowitzka, M.A. and Larkum, A.W. (1986) Reef algae. Oceanus, 29, 49-54.
- Bosence, D.W.J. (1984) Construction and preservation of two Recent coralline algal reefs, St. Croix, Caribbean. Palaeontology, 27, 549–574.
- Bouchon, C. (1985) Quantitative study of Scleractinian Coral communities of Tiahura Reef, Moorea Island, French Polynesia. In: *Proceedings* of the 5th International Coral Reef Symposium (Eds C. Gabrie and M. Harmelin), Tahiti, **6**, 279–284.
- Bouchon, C. (1996) Recherches sur des peuplements de scléractiniaires indo-pacifiques (Mer Rouge, Océan Indien, Océan Pacifique). University of Marseille

- Braga, J.C. and Aguirre, J. (2004) Coralline algae indicate Pleistocene evolution from deep, open platform to outer barrier reef environments in the northern Great Barrier Reef margin. *Coral Reefs*, 23, 547–558.
- Braga, J.C. and Davies, P.J. (1993) Coralline algal distribution in One Tree Reef (Southern Great Barrier Reef, NE Australia). In: International Society for Reef Studies 1st European Regional Meet, Vienna, Abstr, 9,
- Braga, J.C., Webster, J.M., Clague, D.A., Moore, J.G. and Spalding, H. (2005) Very deep water 557 coralline algae (Corallinales, Rhodophyta) off Hawaii. *Phycologia*, 44, Abstract 12–13.
- Braithwaite, C.J.R. (1971) Seychelles reefs: structure and development. In: *Symposium Zool. Soc. London* (Eds D.R. Stoddart and C.M. Yonge), London, **28**, 39–63.
- Bridge, T.C.L., Done, T., Beaman, R., Friedman, A., Williams, S., Pizarro, O. and Webster, J.M. (2011a) Topography, substratum and benthic macrofaunal relationships on a tropical mesophotic shelf margin, central Great Barrier Reef, Australia. *Coral Reefs*, **30**, 143–153.
- Bridge, T.C.L., Done, T., Friedman, A., Beaman, R., Williams, S., Pizarro, O. and Webster, J.M. (2011b) Variability in mesophotic coral reef communities along the Great Barrier Reef, Australia. *Mar. Ecol. Prog. Ser.*, 428, 63–75.
- Bridge, T.C.L., Fabricius, K.E., Bongaerts, P., Wallace, C.C., Muir, P.R., Done, T.J. and Webster, J.M. (2012) Diversity of Scleractinia and Octocorallia in the mesophotic zone of the Great Barrier Reef, Australia. *Coral Reefs*, **31**, 179–189.
- Browne, N.K., Smithers, S.G. and Perry, C.T. (2012) Coral reefs of the turbid inner-shelf of the Great Barrier Reef, Australia: an environmental and geomorphic perspective on their occurrence, composition and growth. *Earth-Sci. Rev.*, **115**, 1–20.
- Bull, G.D. (1982) Scleractinian coral communities of two inshore high island fringing reefs at Magnetic Island, North Queensland. *Mar. Ecol. Prog. Ser.*, 7, 267–272.
- Cabioch, G. (2003) Postglacial reef development in the South-West Pacific: case studies from New Caledonia and Vanuatu. *Sed. Geol.*, 159, 43–59.
- Cabioch, G., Banks-Cutler, K.A., Beck, W.J., Burr, G.S., Corrège, T., Lawrence Edwards, R. and Taylor, F.W. (2003) Continuous reef growth during the last 23calkyr BP in a tectonically active zone (Vanuatu, SouthWest Pacific). *Quatern. Sci. Rev.*, **22**, 1771–1786.
- Cabioch, G., Montaggioni, L.F., Faure, G. and Ribaud-Laurenti, A. (1999) Reef coralgal assemblages as recorders of paleobathymetry and sea level changes in the Indo-Pacific province. *Quatern. Sci. Rev.*, **18**, 1681–1695.

- Cabioch, G., Montaggioni, L.F., Frank, N., Seard, C., Sallé, E., Payri, C., Pelletier, B. and Paterne, M. (2008) Successive reef depositional events along the Marquesas foreslopes (French Polynesia) since 26 ka. *Mar. Geol.*, **254**, 18–34.
- Cairns, S.D. (1982) Stony corals (Cnidaria: Hydrozoa, Scleractinia) of Carrie Bow Cay, Belize. In: *The Atlantic Barrier Reef Ecosystem of Carrie Bow Cay, Belize, I: Structure and communities* (Eds K. Rutzler and I.G. Macintyre), *Smithsonian Institution Press*, Washington, D.C., 271–302.
- Camoin, G.F., Colonna, M., Montaggioni, L.F., Casanova, J., Faure, G. and Thomassin, B.A. (1997) Holocene sea level changes and reef development in southwestern Indian Ocean. *Coral Reefs*, 16, 247–259.
- Camoin, G.F., Ebren, P., Eisenhauer, A., Bard, E. and Faure, G. (2001) A 300 000-yr coral reef record of sea level changes, Mururoa atoll (Tuamotu archipelago, French Polynesia). *Palaeogeogr. Palaeoclimatol. Palaeoecol.*, 175, 325–341.
- Camoin, G.F., Gautret, L.F., Montaggioni, L.F. and Cabioch, G. (1999) Nature and environmental significance of microbialites in Quaternary reefs: the Tahiti paradox. *Sed. Geol.*, **126**, 271–304.
- Camoin, G.F. and Montaggioni, L.F. (1994) High energy coralgal-stromatolite frameworks from Holocene reefs (Tahiti, French Polynesia). *Sedimentology*, **41**, 655–676.
- Camoin, G.F., Montaggioni, L.F. and Braithwaite, C.J.R. (2004) Late glacial to post glacial sea levels in the Western Indian Ocean. *Mar. Geol.*, **206**, 119–146.
- Ceccarelli, D.M., Richards, Z.T., Pratchett, M.S., Cvitanovic, C., Ceccarelli, D.M., Richards, Z.T., Pratchett, M.S. and Cvitanovic, C. (2011) Rapid increase in coral cover on an isolated coral reef, the Ashmore Reef National Nature Reserve, north-western Australia. *Mar. Freshw. Res.*, **62**, 1214–1220
- Chappell, J., Ota, Y. and Berryman, K. (1994) In: Study on Coral Reef Terraces of the Huon Peninsula, Papua New Guinea (Ed. Y. Oto), Geogr. Dept., Senshu Univ., Kawasaki, Japan.
- Chappell, J. and Polach, H. (1991) Post-glacial sea-level rise from a coral record at Huon Peninsula, Papua New Guinea. Nature, 349, 147–149.
- Chen, J.H., Curran, H.A., White, B. and Wasserburg, G.J. (1991) Precise chronology of the last interglacial period: 234U-230Th data from fossil coral reefs in the Bahamas. *Geol. Soc. Am. Bull.*, 103, 82–97.

- Chevalier, J.P., Denizot, M., Mougin, J.L., Plessis, Y. and Salvat, V. (1969) Etude géomorphologique et bionomique de l'atoll de Mururoa (Tuamotu). *Cahiers du Pacifique*, 1–144.
- Chou, L.M. and Yamazato, K. (1990) Community structure of coral reefs within the vicinity of Motobu and Sesoko, Okinawa and the effects of human and natural influences. *Galaxea*, 9, 9–75.
- Ciarapica, G. and Passeri, L. (1993) An overview of the maldivian coral reefs in Felidu and North Malé Atoll (Indian Ocean): Platform drowning by ecological crises. *Facies*, 28, 33.
- Collins, L.B., Zhao, J.-X. and Freeman, H. (2006) A high-precision record of mid-late Holocene sea-level events from emergent coral pavements in the Houtman Abrolhos Islands, southwest Australia. *Quatern. Int.*, 145–146, 78–85.
- Collins, L.B., Zhu, Z.R. and Wyrwoll, K.-H. (1997) Geology of the Houtman Abrolhos Islands. In: *Geology and Hydrogeology of Carbonate Islands, Elsevier Developments in Sedimentology, Elsevier Science Ltd.*, Amsterdam, 54, 811–833.
- Collins, L.B., Zhu, Z.R., Wyrwoll, K.-H. and Eisenhauer, A. (2003) Late Quaternary structure and development of the northern Ningaloo Reef, Australia. *Sed. Geol.*, 159, 81–94.
- Coyne, M.K., Jones, B. and Ford, D. (2007) Highstands during Marine Isotope Stage 5: evidence from the Ironshore Formation of Grand Cayman, British West Indies. *Quatern. Sci. Rev.*, 26, 536–559.
- Cutler, K.B., Edwards, R.L., Taylor, F.W., Cheng, H., Adkins, J., Gallup, C.D., Cutler, P.M., Burr, G.S. and Bloom, A.L. (2003) Rapid sea-level fall and deep-ocean temperature change since the last interglacial period. *Earth Planet. Sci. Lett.*, **206**, 253–271.
- Dai, C.-F. and Horng, S. (2009) Scleractinia fauna of Taiwan: Complex group. National Taiwan University, 334 pp.
- Davies, P.J., Braga, J.C., Lund, M. and Webster, J.M. (2004) Holocene deep water algal buildups on the eastern Australian shelf. *Palaios*, 19, 598–609.
- **Davies, P.J., Marshall, J.F.** and **Hopley, D.** (1985) Relationships between reef growth and sea level in the Great Barrier Reef. In: *Proceedings* of the 5th International Coral Reef Congress, Tahiti, **3**, 95–103.
- **Davies, P.J.** and **Montaggioni, L.F.** (1985) **Davies, P.J.** and **Montaggioni, L.F.** (1985) Reef growth and sea level change: the environmental signature. In: *Proceedings of the 5th International Coral Reef Congress*, Tahiti, **3**, 477–515.

- Dechnik, B., Bastos, A.C., Vieira, L.S., Webster, J.M., Fallon, S., Yokoyama, Y., Nothdurft, L., Sanborn, K., Batista, J., Moura, R. and Amado-Filho, G. (2019) Holocene reef growth in the tropical southwestern Atlantic: Evidence for sea level and climate instability. *Quatern. Sci. Rev.*, 218, 365–377.
- Dechnik, B., Webster, J.M., Davies, P.J., Braga, J.C. and Reimer, P.J. (2015) Holocene "turn-on" and evolution of the Southern Great Barrier Reef: Revisiting reef cores from the Capricorn Bunker Group. *Mar. Geol.*, 363, 174–190.
- Dechnik, B., Webster, J.M., Webb, G.E., Braga, J.C., Zhao, J.-X., Duce, S. and Sadler, J. (2017) The evolution of the Great Barrier Reef during the last interglacial period. *Global Planet. Change*, 149, 53–71.
- **Delesalle, B.**, **Galzin, R.** and **Salvat, B.** (1985) French Polynesian coral reefs. In: *Proceedings of the 5th International Coral Reef Congress*, **1**, 1–554.
- Deschamps, P., Durand, N., Bard, E., Hamelin, B., Camoin, G.F., Thomas, A.L., Henderson, G.M., Okuno, J. and Yokoyama, Y. (2012) Ice-sheet collapse and sea-level rise at the Bølling warming 14,600 years ago. *Nature*, **483**, 559–564.
- Done, T.J. (1982) Patterns in the distribution of coral communities across the central Great Barrier Reef. Coral Reefs, 1, 95–107.
- **Done, T.J.** (1983) Coral zonation: its nature and significance. In: *Perspectives on coral reefs* (Ed. D.J. Barnes), *Australian Institute of Marine Science*, Townsville, 107–147.
- Done, T.J. and Navin, K.F. (1990) Shallow-water benthic communities oncoral reefs. In: *Vanuatu MarineResources: Report of a Biological Survey* (Eds T.J. Done and K.F. Navin), *Aust. Inst. Mar. Sci.*, Townsville, 10–36.
- Dutton, A., Webster, J.M., Zwartz, D., Lambeck, K. and Wohlfarth, B. (2015) Tropical tales of polar ice: evidence of Last Interglacial polar ice sheet retreat recorded by fossil reefs of the granitic Seychelles islands. *Quatern. Sci. Rev.*, **107**, 182–196.
- Easton, W.H. and Ku, T.-L. (1981) 230Th/ 234U dates of Pleistocene deposits on O'ahu. Bull. Mar. Sci., 31, 552–557.
- Edwards, R.L., Beck, J.W., Burr, G.S., Donahue, D.J., Chappell, J.M.A., Bloom, A.L., Druffel, E.R.M. and Taylor, F.W. (1993) A Large Drop in Atmospheric 14C/12C and Reduced Melting in the Younger Dryas, Documented with 230Th Ages of Corals. *Science*, **260**, 962–968.
- Edwards, R.L., Chen, J.H., Ku, T.-L. and Wasserburg, G.J. (1987) Precise Timing of the Last Interglacial Period from Mass Spectrometric Determination of Thorium-230 in Corals. *Science*, 236, 1547–1553.

- **Eisenhauer, A., Wasserburg, G.J., Chen, J.H., Bonani, G., Collins, L.B., Zhu, Z.R.** and **Wyrwoll, K.H.** (1993) Holocene sea-level determination relative to the Australian continent: U/Th (TIMS) and 14C (AMS) dating of coral cores from the Abrolhos Islands. *Earth Planet. Sci. Lett.*, **114**, 529–547.
- Eisenhauer, A., Zhu, Z.R., Collins, L.B., Wyrwoll, K.H. and Eichstätter, R. (1996) The Last Interglacial sea level change: new evidence from the Abrolhos islands, West Australia. *Geol Rundsch*, 85, 606–614.
- Elliott, J.M., Logan, A. and Thomas, M.L.H. (1996) Morphotypes of the foraminiferan *Homotrema rubrum* (Lamarck): distribution and relative abundance on reefs in Bermuda. *Bull. Mar. Sci.*, 58, 261–276.
- Engels, M.S., Fletcher, C.H., Field, M.E., Storlazzi, C.D., Grossman, E.E., Rooney, J.J.B., Conger, C.L. and Glenn, C. (2004) Holocene reef accretion: Southwest Molokai, Hawaii, USA. J Sediment Res 74:255–269. J. Sed. Res., 74, 255–269.
- Erftemeijer, P.L.A., Riegl, B., Hoeksema, B.W. and Todd, P.A. (2012) Environmental impacts of dredging and other sediment disturbances on corals: A review. *Mar. Pollut. Bull.*, 64, 1737–1765.
- Esat, T.M., McCulloch, M.T., Chappell, J., Pillans, B. and Omura, A. (1999) Rapid fluctuations in sea level recorded at Huon Peninsula during the penultimate deglaciation. *Science*, 283, 197–201.
- Faichney, I.D.E., Webster, J.M., Clague, D.A., Braga, J.C., Renema, W. and Potts, D.C. (2011) The impact of the Mid-Pleistocene Transition on the composition of submerged reefs of the Maui Nui Complex, Hawaii. *Palaeogeogr. Palaeoclimatol. Palaeoecol.*, 299, 493– 506.
- Fairbanks, R.G. (1989) A 17,000 year glacial euststic sea level record: influence of glacial melting rates on the Younger Dryas event and deep ocean circulation. *Nature*, **342**, 637–641.
- Fairbanks, R.G. and Matthews, R.K. (1978) The marine oxygen isotope record in Pleistocene coral, Barbados, West Indies. *Quatern. Res.*, 10, 181–196.
- Fan, T. and Dai, C. (1996) Reproductive ecology of the pocilloporid corals in Taiwan. I. Seriatopora hystrix. Acta Oceanogr. Taiwanica, 35, 311–322.
- Faure, G. (1982) Recherche sur les peuplements de Scléractiniaires des récifs coraliens de l'Archipel des Mascareignes (Océan Indien Occidental). D.Sc. thesis, University of Marseille

- Faure, G. and Laboute, P. (1984) Formations récifales de l'atoll de Tikehau (Tuamotu, Polynésie Française, Océan Pacifique) 1. Définition des unités récifales et distribution des principaux peuplements de Scléractiniaires. *Notes Doc ORSTOM Tahiti*, **22**, 108–136.
- Focke, J.W. (1978) The effect of a potential reef-building vermetid-coralline algal community on an eroding limestone coast, Curaçao, Netherland Antilles. In: *Proceedings of the 3rd International Coral Reef Symposium* (Ed. D.L. Taylor), 239–245.
- Foslie, M.H. (1929) Contribution to a Monograph of the Lithothamnia. Det Kongelige Norske Videnskabers Selskab Musee, Trondheim, 60 pp.
- Frank, N., Turpin, L., Cabioch, G., Blamart, D., Tressens-Fedou, M., Colin, C. and Jean-Baptiste, P. (2006) Open system U-series ages of corals from a subsiding reef in New Caledonia: Implications for sea level changes and subsidence rate. *Earth Planet. Sci. Lett.*, 249, 274–289.
- Fruijtier, C., Elliott, T. and Schlager, W. (2000) Mass-spectrometric 234U-230Th ages from the Key Largo Formation, Florida Keys, United States: Constraints on diagenetic age disturbance. *Geol. Soc. Am. Bull.*, **112**, 267–277.
- Fujita, K., Sasaki, T., Koyano, S., Chinen, M., Hongo, C., Webster, J.M. and Iryu, Y. (2020) Reefal microbial crusts found in Middle Holocene reef from Okinawa Island, the Ryukyu Archipelago. *Galaxea*, 22, 9–25.
- Galewsky, J., Silver, E.A., Gallup, C.D., Edwards, R.L. and Potts, D.C. (1996) Foredeep tectonics and carbonate platform dynamics in the Huon Gulf, Papua New Guinea. *Geology*, 24, 819–822.
- Gallup, C.D., Cheng, H., Taylor, F.W. and Edwards, R.L. (2002) Direct Determination of the Timing of Sea Level Change During Termination II. *Science*, **295**, 310–313.
- Gallup, C.D., Edwards, R.L. and Johnson, R.G. (1994) The Timing of High Sea Levels Over the Past 200,000 Years. Science, 263, 796-800.
- Geister, J. (1983) Holozäne westindische Korallenriffe: Geomorphologie, Ökologie und Fazies. Facies, 9, 173–284.
- Ginsburg, R.N. (1956) Environmental Relationships of Grain Size and Constituent Particles in Some South Florida Carbonate Sediments. *AAPG Bull.*, 40, 2384–2427.
- Gischler, E., Hudson, J.H., Humblet, M., Braga, J.C., Eisenhauer, A., Isaack, A., Anselmetti, F.S. and Camoin, G.F. (2016) Late Quaternary barrier and fringing reef development of Bora Bora (Society Islands, south Pacific): First subsurface data from the Darwin-type barrier-reef system. *Sedimentology*, **63**, 1522–1549.

- Gischler, E., Hudson, J.H., Humblet, M., Braga, J.C., Schmitt, D., Isaack, A., Eisenhauer, A. and Camoin, G.F. (2018a) Holocene and Pleistocene fringing reef growth and the role of accommodation space and exposure to waves and currents (Bora Bora, Society Islands, French Polynesia). *Sedimentology*, **66**, 305–328.
- Gischler, E., Humblet, M., Braga, J.C. and Eisenhauer, A. (2018b) Last interglacial reef facies and late Quaternary subsidence in the Maldives, Indian Ocean. *Mar. Geol.*, 406, 34–41.
- Gischler, E., Meyer, G., Braga, J.C., Riechelmann, S., Immenhauser, A. and Eisenhauer, A. (This Volume) Neogene and Quaternary reef terraces of Mangaia, Rarotonga and Aitutaki (southern Cook Islands, south Pacific) revisited: gauges of sea-level change and island uplift?
- Glenn, K.C. and Collins, D. (2005) Ashmore Reefs sedimentologic and morphological response to sea level rise. *He Beagle Rec. Mus. Art Galleries North. Territ. Suppl.*, 1, 13–29.
- Glynn, P.W. (1973) Aspects of the ecology of coral reefs in the western Atlantic region. In: *Biology and Geology of Coral Reefs V2: Biology 1* (Eds O.A. Jones and R. Endean), *Academic Press*, New York, 271–324.
- Gordon, G.D., Masaki, T. and Akioka, H. (1976) Floristic and distributional-account of the common crustose coralline algae on Guam. *Micronesica*, **12**, 247–277.
- Goreau, T.F. (1959) The Ecology of Jamaican Coral Reefs I. Species Composition and Zonation. Ecology, 40, 67-90.
- Goreau, T.F. and Wells, J.W. (1967) The shallow-water Scleractinia of Jamaica: revised list of species and their vertical distribution range. *Bull. Mar. Sci.*, 17, 442–453.
- Grigg, R.W. (2006) Depth limit for reef building corals in the Au'au Channel, S.E. Hawaii. Coral Reefs, 25, 77-84.
- Guillaume, M.M.M., Reyss, J.-L., Pirazzoli, P.A. and Bruggemann, J.H. (2013) Tectonic stability since the last interglacial offsets the Glorieuses Islands from the nearby Comoros archipelago. *Coral Reefs*, **32**, 719–726.
- Hallmann, N., Camoin, G.F., Eisenhauer, A., Samankassou, E., Vella, C., Botella, A., Milne, G.A., Pothin, V., Dussouillez, P., Fleury, J., Fietzke, J. and Goepfert, T. (2020) Reef response to sea-level and environmental changes in the Central South Pacific over the past 6000 years. *Global Planet. Change*, 195, 103357.

- Hamanaka, N., Kan, H., Nakashima, Y., Yokoyama, Y., Okamoto, T., Ohashi, T., Adachi, H., Matsuzaki, H. and Hori, N. (2015) Holocene reef-growth dynamics on Kodakara Island (29°N, 129°E) in the Northwest Pacific. *Geomorphology*, **243**, 27–39.
- Hamanaka, N., Kan, H., Yokoyama, Y., Okamoto, T., Nakashima, Y. and Kawana, T. (2012) Disturbances with hiatuses in high-latitude coral reef growth during the Holocene: Correlation with millennial-scale global climate change. *Global Planet. Change*, **80–81**, 21–35.
- Harper, B.B., Droxler, A.W., Webster, J.M., Montagna, P., Yokoyama, Y., Humblet, M., Jorry, S.J., Beaufort, L., Tachikawa, K. and Pons-Branchu, E. (This volume) Shelf-edge deglacial reef establishment and subsequent partial demise: response to distinct pulses of sea-level rise associated with environmental changes.
- Hearty, P.J. (2002) The Ka'ena highstand of O'ahu, Hawai'i: Further evidence of Antarctic ice collapse during the middle Pleistocene. *Pac. Sci.*, 56, 65–81.
- Hearty, P.J., Kaufman, D.S., Olson, S.L. and James, H.F. (2000) Stratigraphy and whole-rock amino acid geochronology of key Holocene and Last Interglacial carbonate deposits in the Hawaiian Islands. *Pac. Sci.*, **54**, 423–442.
- Highsmith, R.C. (1979) Coral growth rates and environmental control of density banding. J. Exp. Mar. Biol. Ecol., 37, 105–125.
- Hongo, C. (2012) Holocene key coral species in the Northwest Pacific: indicators of reef formation and reef ecosystem responses to global climate change and anthropogenic stresses in the near future. *Quatern. Sci. Rev.*, **35**, 82–99.
- Hongo, C. and Kayanne, H. (2009) Holocene coral reef development under windward and leeward locations at Ishigaki Island, Ryukyu Islands, Japan. *Sed. Geol.*, 214, 62–73.
- Hongo, C. and Kayanne, H. (2010a) Relationship between species diversity and reef growth in the Holocene at Ishigaki Island, Pacific Ocean. *Sed. Geol.*, **223**, 86–99.
- Hongo, C. and Kayanne, H. (2010b) Holocene sea-level record from corals: Reliability of paleodepth indicators at Ishigaki Island, Ryukyu Islands, Japan. *Palaeogeogr. Palaeoclimatol. Palaeoecol.*, **287**, 143–151.
- Hongo, C. and Kayanne, H. (2011) Key species of hermatypic coral for reef formation in the northwest Pacific during Holocene sea-level change. *Mar. Geol.*, **279**, 162–177.
- Hongo, C. and Montaggioni, L.F. (2015) Biogeography of Holocene coral species in the western Indian Ocean. *Palaeogeogr. Palaeoclimatol. Palaeoecol.*, **438**, 51–69.

- Hongo, C., Lin, K. and Shen, C.-C. (2017) Late Holocene reef ecosystem baseline: Field evidence from the raised reef terraces of Kodakara and Kikai Islands, Ryukyu Islands, Japan. *Quatern. Int.*, **455**, 8–17.
- Hubbard, D.K. (2009) Depth-related and species-related patterns of Holocene reef accretion in the Caribbean and western Atlantic: a critical assessment of existing models. *Int. Assoc. Sedimentol. Spec. Publ.*, **41**, 1–18.
- Hubbard, D.K., Gill, I.P. and Burke, R.B. (2013) Holocene reef building on eastern St. Croix, US Virgin Islands: Lang Bank revisited. *Coral Reefs*, **32**, 653–669.
- Humblet, M. and Iryu, Y. (2014) Pleistocene Coral Assemblages on Irabu-Jima, South Ryukyu Islands, Japan. Paleontol. Res. 18, 224–244.
- Humblet, M., Iryu, Y. and Nakamori, T. (2009) Variations in Pleistocene coral assemblages in space and time in southern and northern Central Ryukyu Islands, Japan. *Mar. Geol.*, **259**, 1–20.
- Humblet, M., Potts, D.C., Webster, J.M., Braga, J.C., Iryu, Y., Yokoyama, Y., Bourillot, R., Séard, C., Droxler, A., Fujita, K., Gischler, E. and Kan, H. (2019) Late glacial to deglacial variation of coralgal assemblages in the Great Barrier Reef, Australia. *Global Planet. Change*, 174, 70–91.
- Humblet, M. and Webster, J.M. (2017) Coral community changes in the Great Barrier Reef in response to major environmental changes over glacial-interglacial timescales. *Palaeogeogr. Palaeoclimatol. Palaeoecol.*, **472**, 216–235.
- Hunter, I.G. (1994) Modern and ancient coral associations of the Cayman Islands [unpublished Ph.D. thesis]. PhD Thesis, University of Alberta

Huston, M. (1985) Variation in coral growth rates with depth at Discovery Bay, Jamaica. Coral Reefs, 4, 19–25.

- Inoue, S., Kayanne, H., Matta, N., Chen, W.S. and Ikeda, Y. (2011) Holocene uplifted coral reefs in Lanyu and Lutao Islands to the southeast of Taiwan. *Coral Reefs*, **30**, 581–592.
- Iryu, Y. (1992) Fossil nonarticulated coralline algae as depth indicators for the Ryukyu Group. *Trans. Proc. Palaeontol. Soc. Jpn., N.S.*, 167, 1165–1179.
- Iryu, Y. and Matsuda, S. (1988) Depth distribution, abun- dance and species assemblages of nonarticulated cor- alline algae in the Ryukyu Islands, southwestern Japan. In: *Proceedings of the 6th International Coral Reef Symposium*, Townsville, 3, 101–106.

- Iryu, Y., Nakamori, T., Matsuda, S. and Abe, O. (1995) Distribution of marine organisms and its geological significance in the modern reef complex of the Ryukyu Islands. *Sed. Geol.*, 99, 243–258.
- Iryu, Y., Takahashi, Y., Fujita, K., Camoin, G.F., Cabioch, G., Matsuda, H., Sato, T., Sugihara, K., Webster, J.M. and Westphal, H. (2010) Sealevel history recorded in the Pleistocene carbonate sequence in IODP Hole 310-M0005D, off Tahiti. *Isl. Arc*, **19**, 690–706.
- Israelson, C. and Wohlfarth, B. (1999) Timing of the Last-Interglacial High Sea Level on the Seychelles Islands, Indian Ocean. *Quatern. Res.*, **51**, 306–316.
- Jaap, W.C. (1984) The ecology of the south Florida coral reefs: A community profile. U.S. Fish and Wildlife Service FWS/OBS-82/08, Sidell, Louisiana, USA, 138 pp.
- Jaramillo-Vogel, D., Foubert, A., Braga, J.C., Schaegis, J.C., Atnafu, B., Grobety, B. and Kidane, T. (2019) Pleistocene sea-floor fibrous crusts and spherulites in the Danakil Depression (Afar, Ethiopia). *Sedimentology*, 66, 480–512.
- JCRS Japanese Coral Reef Society (2004) Coral Reefs of Japan. Ministry of the Environment, Japan, 356 pp.
- Jesionek, M.B., Bahia, R.G., Hernández-Kantún, J.J., Adey, W.H., Yoneshigue-Valentin, Y., Longo, L.L. and Amado-Filho, G.M. (2016) A taxonomic account of non-geniculate coralline algae (Corallinophycidae, Rhodophyta) from shallow reefs of the Abrolhos Bank, Brazil. *Algae*, **31**, 317–340.
- Jones, B. and Hunter, I.G. (1990) Pleistocene paleogeography and sea levels on the Cayman Islands, British West Indies. Coral Reefs, 9, 81-91.
- Jones, B. and Hunter, I.G. (1995) Vermetid buildups from Grand Cayman, British West Indies. J. Coastal Res., 11, 973–983.
- Kahng, S.E. and Kelley, C.D. (2007) Vertical zonation of megabenthic taxa on a deep photosynthetic reef (50–140 m) in the Au'au Channel, Hawaii. *Coral Reefs*, **26**, 679–687.
- Kahng, S.E. and Maragos, J.E. (2006) The deepest, zooxanthellate scleractinian corals in the world? Coral Reefs, 25, 254–254.
- Kan, H., Hori, N., Nakashima, Y. and Ichikawa, K. (1995) The evolution of narrow reef flats at high-latitude in the Ryukyu Islands. *Coral Reefs*, 14, 123–130.
- Kan, H., Takahashi, T. and Koba, M. (1991) Morpho-Dynamics on Holocene Reef Accretion: Drilling Results from Nishimezaki Reef, Kume Island, the Central Ryukyus. *Geogr. Rev. Jpn. Ser. B*, 64, 114–131.

- Kayanne, H., Yamano, H. and Randall, R.H. (2002) Holocene sea-level changes and barrier reef formation on an oceanic island, Palau Islands, western Pacific. *Sed. Geol.*, 150, 47–60.
- Keats, D.W., Steneck, R.S., Townsend, R. and Borowitzka, M.A. (1996) *Lithothamnion prolifer* Foslie: a common non-geniculate coralline alga (Rhodophyta: Corallinaceae) from tropical and subtropical Indo-Pacific. *Botanica Marina*, **39**, 187–200.
- Khan, N.S., Ashe, E., Horton, B.P., Dutton, A., Kopp, R.E., Brocard, G., Engelhart, S.E., Hill, D.F., Peltier, W.R., Vane, C.H. and Scatena, F.N. (2017) Drivers of Holocene sea-level change in the Caribbean. *Quatern. Sci. Rev.*, 155, 13–36.
- Kospartov, M., Beger, M., Ceccarelli, D. and Richards, Z. (2006) An assessment of the distribution and abundance of sea cucumbers, trochus, giant clams, coral, fish and invasive marine species at Ashmore Reef National Nature Reserve and Cartier Island Marine Reserve:2005. Report for the Department of the Environmentand Heritage. *UniQuest Pty Ltd*, Brisbane.
- Ku, T.-L., Kimmel, M.A., Easton, W.H. and O'Neil, T.J. (1974) Eustatic sea level 120,000 years ago on Oahu, Hawaii. Science, 183, 959–962.
- Kühlmann, D.H.H. (1983) Composition and ecology of deep-water coral associations. *Helgoländer Meeresunters.*, 36, 183–204.
- Kühlmann, D.H.H. and Chevalier, J.-P. (1986) Les coraux (Scléractiniaires et Hydro-coralliaires) de 'atoll de Takapoto, îles Tuamotu: Aspects écologiques. *Mar. Ecol.*, 7, 75–104.
- Laborel, J. (1986) Vermetid gastropods as sea-level indicators. In: *Sea-Level Research: a manual for the collection and evaluation of data* (Ed. O. van de Plassche), *Springer Netherlands*, Dordrecht, 281–310.
- Leão, Z.M.A.N. and Ginsburg, R.N. (1997) Living reefs surrounded by siliciclastic: the Abrolhos coastal reefs, Bahia, Brazil. *Coral Reef Symposium*, **2**, 1767–1772.
- Leão, Z.M.A.N., Kikuchi, R.K.P. and Engelberg, E.F. (1997) Internet guide to the corals and hydrocorals of Brazil. http://www.cpgg.ufba.br/guia-corais/
- Lee, R.S.K. (1967) Taxonomy and distribution of the melobesioid algae on Rongelap Atoll, Marshall Islands. Can. J. Bot., 45, 985–1001.
- Lemoine, P. (1911) Structure anatomique des Mélobésiées. Application à la classification. Ann. Inst. Océanogr. (Monaco), 2, 1–213.
- Lewis, M.S. (1968) The morphology of the fringing coral reefs along the East Coast of Mahé, Seychelles. J. Geol., 76, 140–153.

- Lighty, R.G., Macintyre, I.G. and Stuckenrath, R. (1978) Submerged early Holocene barrier reef south-east Florida shelf [10]. *Nature*, 276, 59–60.
- Lighty, R.G., Macintyre, I.G. and Stuckenrath, R. (1982) *Acropora palmata* reef framework: A reliable indicator of sea level in the western atlantic for the past 10,000 years. *Coral Reefs*, **1**, 125–130.
- Lidz, B.H. (2004) Coral reef complexes at an atypical windward platform margin: Late Quaternary, southeast Florida. GSA Bull., 116, 974–988.
- Lidz, B.H., Hine, A.C., Shinn, E.A. and Kindinger, J.L. (1991) Multiple outer-reef tracts along the south Florida bank margin: Outlier reefs, a new windward-margin model. *Geology*, **19**, 115–118.
- Littler, D.S. and Littler, M.M. (2003) South Pacific reef plants: a divers' guide to the plant life of South Pacific coral reefs. *Offshore Graphics, Inc.*, Washington, D.C., 331 pp.
- Littler, D.S. and Littler, M.M. (2000) Caribbean reef plants: An identification guide to the reef plants of the Caribbean, Bahamas, Florida and Gulf of Mexico. *Offshore Graphics, Inc.*, Washington, D.C., 542 pp.
- Loya, Y. and Sakai, K. (2008) Bidirectional sex change in mushroom stony corals. Proc. R. Soc. B Biol. Sci., 275, 2335–2343.
- Ludwig, K.R., Muhs, D.R., Simmons, K.R., Halley, R.B. and Shinn, E.A. (1996) Sea-level records at ~ 80 ka from tectonically stable platforms: Florida and Bermuda. *Geology*, 24, 211–214.
- Lund, M.J., Davies, P.J. and Braga, J.C. (2000) Coralline algal nodules off Fraser Island, eastern Australia. Facies, 42, 25–34.
- Macintyre, I.G., Rützler, K., Norris, J.N., Smith, K.P., Cairns, S.D., Bucher, K.E. and Steneck, R.S. (1991) An early Holocene reef in the western Atlantic: submersible investigations of a deep relict reef off the west coast of Barbados, W.I. *Coral Reefs*, **10**, 167–174.
- MacKenzie, F.T., Kulm, L.D., Cooley, R.L. and Barnhart, J.T. (1965) *Homotrema rubrum* (Lamarck), a sediment transport indicator. J. Sed. Res., 35, 265–272.
- Manton, S.M. (1935) Ecological surveys of coral reefs. Scientific Reports of the Great Barrier Reef Expedition, 57, 278–289.
- Marshall, J.F. and Davies, P.J. (1982) Internal structure and Holocene evolution of One Tree Reef, Southern Great Barrier Reef. *Coral Reefs*, 1, 21–28.
- Marshall, J.F. and Thom, B.G. (1976) The sea level in the last interglacial. *Nature*, 263, 120–121.

- Marshall, J.F., Tsuji, Y., Matsuda, H., Davies, P.J., Iryu, Y., Honda, N. and Satoh, Y. (1998) Quaternary and Tertiary subtropical carbonate platform development on the continental margin of southern Queensland, Australia. In: *Reefs and Carbonate Platforms in the Pacific and Indian Oceans* (Eds G.F. Camoin and P.J. Davies), *Spec. Publ. Int. Assoc. Sedimentol.*, 25, 163–195.
- Marshall, S.M. and Orr, A.P. (1931) Sedimentation on the Low Isles and its relation to coral growth. *Scientific Reports of the Great Barrier Reef Expedition*, 1, 93–133.
- Martin, J.M., Braga, J.C. and Rivas, P. (1989) Coral successions in Upper Tortonian reefs in SE Spain. Lethaia, 22, 271–286.
- Martin, L., Dominguez, J.M.L. and Bittencourt, A.C.S.P. (2003) Fluctuating Holocene sea levels in eastern and southeastern Brazil: evidence from multiple fossil and geometric indicators. J. Coastal Res., 19, 101–124.
- Martindale, W. (1992) Calcified epibionts as palaeoecological tools: examples from the Recent and Pleistocene reefs of Barbados. *Coral Reefs*, **11**, 167–177.
- Matsuda, S., Campbell, C. and Wallensky, E. (1994) Recent coralline algal assemblages at Huon Peninsula. In: *Study on Coral Reef Terraces of the Huon Peninsula, Papua New Guinea: Establishment of Quaternary Sea Level and Tectonic History* (Ed. Y. Ota), *Monbusho International Research Program Preliminary Report, IGCP Contrib.* 274, 111–116.
- McClanahan, T.R. and Obura, D. (1996) Sedimentation effects on shallow coral communities in Kenya. J. Exp. Mar. Biol. Ecol., 209, 103–122.
- Mesolella, K.J. (1967) Zonation of Uplifted Pleistocene Coral Reefs on Barbados, West Indies. Science, 156, 638-640.
- Mesolella, K.J., Matthews, R.K., Broecker, W.S. and Thurber, D.L. (1969) The astronomical theory of climatic change: Barbados data. *J. Geol.*, 77, 250–274.
- Mesolella, K.J., Sealy, H.A. and Matthews, R.K. (1970) Facies geometries within Pleistocene reefs of Barbados, West Indies. Am. Assoc. Pet. Geol. Bull., 54, 1899–1917.
- Minnery, G.A. (1990) Crustose coralline algae from the Flower Garden Banks, northwestern Gulf of Mexico: controls on distribution and growth morphology. *J. Sed. Petrol.*, **60**, 992–1007.

- Minnery, G.A., Rezak, R. and Bright, T.J. (1985) Depth zonation and growth forms of crustose coralline algae: Flower Garden Banks, Northwestern Gulf of Mexico. In: *Paleoalgology: Contemporary research and applications* (Eds D.F. Toomey and M.H. Niteck), *Springer*, Berlin Heidelberg New York, 237–246.
- Moberg, F., Nyström, M., Kautsky, N., Tedengren, M. and Jarayabhand, P. (1997) Effects of reduced salinity on the rates of photosynthesis and respiration in the hermatypic corals Porites lutea and Pocillopora damicornis. *Mar. Ecol. Prog. Ser.*, 157, 53–59.
- Montaggioni, L.F. (1988) Holocene reef growth history in mid-plate high volcanic. In: *Proceedings of the 6th International Coral Reef Symposium*, Townsville, 3, 455–460.
- Montaggioni, L.F. (2005) History of Indo-Pacific coral reef systems since the last glaciation: Development patterns and controlling factors. *Earth-Sci. Rev.*, **71**, 1–75.
- Montaggioni, L.F. and Braithwaite, C.J.R. (2009) Quaternary Coral Reef Systems: History, development processes and controlling factors, 1st edn. *Elsevier Science Ltd.*, 532 pp.
- Montaggioni, L.F., Cabioch, G., Camoin, G.F., Bard, E., Laurenti, A.R., Faure, G., Déjardin, P. and Récy, J. (1997) Continuous record of reef growth over the past 14 k.y. on the mid-Pacific island of Tahiti. *Geology*, 25, 555–558.
- Montaggioni, L.F. and Camoin, G.F. (1993) Stromatolites associated with coralgal communities in Holocene high-energy reefs. *Geology*, 21, 149–152.
- Montaggioni, L.F. and Faure, G. (1997) Response of reef coral communities to sea-level rise: a Holocene model from Mauritius (Western Indian Ocean). *Sedimentology*, 44, 1053–1070.
- Montaggioni, L.F. and Hoang, C.T. (1988) The last interglacial high sea level in the granitic Seychelles, Indian Ocean. *Palaeogeogr. Palaeoclimatol. Palaeoecol.*, **64**, 79–91.
- Montaggioni, L.F. and Martin-Garin, B. (2020) Quaternary development history of coral reefs from West Indian islands: a review. *Int. J. Earth Sci.*, 109, 911–930.
- Mortlock, R.A., Abdul, N.A., Wright, J.D. and Fairbanks, R.G. (2016) Reply to comment by E. Bard *et al.* on "Younger Dryas sea level and meltwater pulse 1B recorded in Barbados reef crest coral *Acropora palmata*" by N. A. Abdul *et al. Paleoceanography*, **31**, 1609–1616.

- Morton, J.E. (1973) The eulittoral zone of tropical Pacific shores (a review and a prospect). In: *Oceanography of the South Pacific* (Ed. R. Fraser), 429–444.
- Morton, J.E. and Challis, D.A. (1969) The biomorphology of Solomon islands shores with a discussion of zoning patterns and ecological terminology. *Philos. Trans. R. Soc. Lond.*, **255**, 459–516.
- Muhs, D.R. and Simmons, K.R. (2017) Taphonomic problems in reconstructing sea-level history from the late Quaternary marine terraces of Barbados. *Quatern. Res.*, 88, 409–429.
- Muhs, D.R., Simmons, K.R., Schumann, R.R. and Halley, R.B. (2011) Sea-level history of the past two interglacial periods: new evidence from U-series dating of reef corals from south Florida. *Quatern. Sci. Rev.*, **30**, 570–590.
- Muhs, D.R. and Szabo, B.J. (1994) New uranium-series ages of the Waimanalo Limestone, O'ahu, Hawai'i: Implications for sea level during the last interglacial period. *Mar. Geol.*, **118**, 315–326.
- Muir, P.R., Wallace, C., Bridge, T.C.L. and Bongaerts, P. (2015) Diverse staghorn coral fauna on the mesophotic reefs of north-east Australia. *PLoS One*, 10, e0117933.
- Multer, H.G., Gischler, E., Lundberg, J., Simmons, K.R. and Shinn, E.A. (2002) Key Largo Limestone revisited: Pleistocene shelf-edge facies, Florida Keys, USA | SpringerLink. *Facies*, 46, 229–271.
- Nakamori, T. (1986) Community structures of Recent and Pleistocene hermatypic corals in the Ryukyu Islands, Japan. *Science Reports Tohoku University, Second Series: Geology*, 56, 71–133.
- Nakamori, T., Campbell, C.R. and Wallensky, E. (1995a) Living hermatypic coral assemblages at Huon Peninsula, Papua New Guinea. J. Geogr. (Japan), 104, 743–757.
- Nakamori, T., Iryu, Y. and Matsuda, S. (1999) Recent and Pleistocene coral reefs in the Ryukyu Islands, Japan. Field Excursion Guidebook of the 8th International Symposium on fossil Cnidaria and Porifera, Sendai (field trip A1). 33 pp.
- Nakamori, T., Matsuda, S., Omura, A. and Ota, Y. (1995b) Depositional environments of the Pleistocene reef limestones at Huon Peninsula, Papua New Guinea on the basis of hermatypic coral assemblages. J. Geogr. (Japan), 104, 725–742.
- Newell, N.D. and Rigby, J.K. (1957) Geological Studies on the Great Bahama Bank. In: *Regional Aspects of Carbonate Deposition* (Eds R.J.L. Blanc and J.G. Breeding), *SEPM Spec. Publ.*, **5**, 15-79.

Nishihira, M. and Veron, J.E.N. (1995) Hermatypic corals of Japan. Kaiyusha, Tokyo, 439 pp.

- Oliver, J.K., Chalker, B.E. and Dunlap, W.C. (1983) Bathymetric adaptations of reef-building corals at davies reef, great barrier reef, Australia. I. Long-term growth responses of *Acropora formosa* (Dana 1846). *J. Exp. Mar. Biol. Ecol.*, **73**, 11–35.
- Ota, Y., Chappell, J., Kelley, R., Yonekura, N., Matsumoto, E., Nishimura, T. and Head, J. (1993) Holocene coral reef terraces and coseismic uplift of Huon Peninsula, Papua New Guinea. *Quatern. Res.*, 40, 177–188.
- Pandolfi, J.M. and Minchin, P.R. (1995) A comparison of taxonomic composition and diversity between reef coral life and death assemblages in Madang Lagoon, Papua New Guinea. *Palaeogeogr. Palaeoclimatol. Palaeoecol.*, 119, 321–341.
- Payri, C.E., De Ramon N'Yeurt, A. and Orempuller, J. (2000) Algues de Polynésie Française / algae of French Polynesia. Au Vent de Îles, Singapore, 320 pp.
- Peltier, W.R. and Fairbanks, R.G. (2006) Global glacial ice volume and Last Glacial Maximum duration from an extended Barbados sea level record. *Quatern. Sci. Rev.*, 25, 3322–3337.
- Perkins, R.D. (1977) Depositional framework of Pleistocene rocks in south Florida. In: *Quaternary Sedimentation in south Florida, part II* (Eds P. Enos and R.D. Perkins), *Geol. Soc. Am. Mem.*, 147, 131–198.
- Perry, C.T., Smithers, S.G. and Johnson, K.G. (2009) Long-term coral community records from Lugger Shoal on the terrigenous inner-shelf of the central Great Barrier Reef, Australia. *Coral Reefs*, 28, 941–948.
- Pichon, M. (1973) Recherches sur les peuplements a dominance d'Anthozoaires dans les récifs coralliens de Tuléar (Madagascar). D.Sc. thesis, University of Marseille
- Pilarczyk, J.E. and Reinhardt, E.G. (2011) *Homotrema rubrum* (Lamarck) taphonomy as an overwash indicator in marine ponds on Anegada, British Virgin Islands. *Nat. Hazards*, **63**, 85–100.
- **Pirazzoli, P.A.** and **Montaggioni, L.F.** (1988) The 7,000 year sea-level curve in French Polynesia: geodynamic implications for mid-plate volcanic islands. In: *Proceedings of the 6th International Coral Reef Symposium*, Townsville, 467–472.
- Pirazzoli, P.A., Montaggioni, L.F., Salvat, B. and Faure, G. (1988) Late Holocene sea level indicators from twelve atolls in the central and eastern Tuamotus (Pacific Ocean). *Coral Reefs*, 7, 57–68.

- Potter, E.-K., Esat, T.M., Schellmann, G., Radtke, U., Lambeck, K. and McCulloch, M.T. (2004) Suborbital-period sea-level oscillations during marine isotope substages 5a and 5c. *Earth Planet. Sci. Lett.*, **225**, 191–204.
- Potts, D.C., Done, T.J., Isdale, P.J. and Fisk, D.A. (1985) Dominance of a coral community by the genus Porites (Scleractinia). *Mar. Ecol. Prog. Ser.*, 23, 79–84.
- Pratchett, M.S., Anderson, K.D., Hoogenboom, M.O., Widman, E., Baird, A.H., Pandolfi, J.M., Edmunds, P.J. and Lough, J.M. (2015) Spatial, temporal and taxonomic variation in coral growth - implications for the structure and function of coral reef ecosystems. *Oceanogr. Mar. Biol.*, **53**, 215–295.
- Puga-Bernabéu, Á., Webster, J.M., Braga, J.C., Clague, D.A., Dutton, A., Eggins, S., Fallon, S., Jacobsen, G.E., Paduan, J.B. and Potts, D.C. (2016) Morphology and evolution of drowned carbonate terraces during the last two interglacial cycles, off Hilo, NE Hawaii. *Mar. Geol.*, 371, 57–81.
- Precht, W.F. (2019) Can Porites spp. corals be used as a bio-indicator for sediment stress on coral reefs? Ecol. Indic., 106, 105538.
- **Rasser, M.** and **Piller, W.E.** (1997) Depth distribution of calcareous encrusting associations in the northern Red Sea (Safaga, Egypt) and their geological implications. In: *Proceedings of the 8th International Coral Reef Symposium*, **1**, 743–748.
- Reed, J.K. (1985) Deepest distribution of Atlantic hermatypic corals discovered in the Bahamas. In: *Proceedings of the 5th International Coral Reef Congress*, 6, 249–254.
- Renema, W. and Troelstra, S.R. (2001) Larger foraminifera distribution on a mesotrophic carbonate shelf in SW Sulawesi (Indonesia). *Palaeogeogr. Palaeoclimatol. Palaeoecol.*, 175, 125–146.
- **Richard, G.** (1982) Mollusques lagunaires et récifaux de Polynésie française. Inventaire faunistique, bionomie, bilan quantitatif, croissance, production. D.Sc. thesis, University of Paris VI
- Richards, Z., .,Beger, M., Hobbs, J.-P., Bowling, T., Chong-Seng, K. and Pratchett, M. (2009) Ashmore Reef National Nature Reserve and Cartier Island Marine Reserve. Marine Survey 2009. Department of the Environment, Water Heritage & the Arts, JCU.
- Rigby, J.K. and Roberts, H.H. (1976) Grand Cayman Island: Geology, sediments and marine communities. *Bringham Young University*, Provo, Utah, 95 pp.

- **Ringeltaube, P.** and **Harvey, A.** (2000) Non-geniculate coralline algae (Corallinales, Rhodophyta) on Heron Reef, Great Barrier Reef (Australia). *Botanica Marina*, **43**, 431–454.
- Roff, G. (2020) Reef accretion and coral growth rates are decoupled in Holocene reef frameworks. Mar. Geol., 419, 106065.
- Rosen, B.R. (1971) Principal features of reef coral ecology in shallow water environments of Mahe, Seychelles. In: *Symposia of the Zoological Society of London* (Eds D.R. Stoddart and C.M. Yonge), London, **28**, 103–183.
- Ryan, E.J., Morgan, K.M., Kench, P.S., Owen, S.D., Carvajal, C.P. and Turner, T. (2021) Fossil Reefs Reveal Temporally Distinct Late Holocene Lagoonal Reef Shutdown Episodes at Kiritimati Island, Central Pacific. *Geophys. Res. Lett.*, **48**, e2020GL092113.
- Ryan, E.J., Smithers, S.G., Lewis, S.E., Clark, T.R. and Zhao, J. (2018a) The Variable Influences of Sea Level, Sedimentation and Exposure on Holocene Reef Development over a Cross-Shelf Transect, Central Great Barrier Reef. *Diversity*, **10**, 110.
- Ryan, E.J., Smithers, S.G., Lewis, S.E., Clark, T.R. and Zhao, J.X. (2016a) Chronostratigraphy of Bramston Reef reveals a long-term record of fringing reef growth under muddy conditions in the central Great Barrier Reef. *Palaeogeogr. Palaeoclimatol. Palaeoecol.*, 441, 734–747.
- Ryan, E.J., Smithers, S.G., Lewis, S.E., Clark, T.R. and Zhao, J.X. (2016b) The influence of sea level and cyclones on Holocene reef flat development: Middle Island, central Great Barrier Reef. *Coral Reefs*, **35**, 805–818.
- Ryan, E.J., Smithers, S.G., Lewis, S.E., Clark, T.R., Zhao, J.-X. and Hua, Q. (2018b) Fringing reef growth over a shallow last interglacial reef foundation at a mid-shelf high island: Holbourne Island, central Great Barrier Reef. *Mar. Geol.*, **398**, 137–150.
- Sagawa, N., Nakamori, T. and Iryu, Y. (2001) Pleistocene reef development in the southwest Ryukyu Islands, Japan. *Palaeogeogr. Palaeoclimatol. Palaeoecol.*, 175, 303–323.
- Sanborn, K.L., Webster, J.M., Webb, G.E., Braga, J.C., Humblet, M., Nothdurft, L., Patterson, M.A., Dechnik, B., Warner, S., Graham, T., Murphy, R.J., Yokoyama, Y., Obrochta, S.P., Zhao, J. and Salas-Saavedra, M. (2020) A new model of Holocene reef initiation and growth in response to sea-level rise on the Southern Great Barrier Reef. Sed. Geol., 397, 105556.
- Sanborn, K.L., Webster, J.M., Yokoyama, Y., Dutton, A., Braga, J.C., Clague, D.A., Paduan, J.B., Wagner, D., Rooney, J.J. and Hansen, J.R. (2017) New evidence of Hawaiian coral reef drowning in response to meltwater pulse-1A. *Quatern. Sci. Rev.*, 175, 60–72.
- Sanders, D. and Baron-Szabo, R.C. (2005) Scleractinian assemblages under sediment input: their characteristics and relation to the nutrient input concept. *Palaeogeogr. Palaeoclimatol. Palaeoecol.*, **216**, 139–181.

- Sasaki, K., Omura, A., Murakami, K., Sagawa, N. and Nakamori, T. (2004) Interstadial coral reef terraces and relative sea-level changes during marine oxygen isotope stages 3–4, Kikai Island, central Ryukyus, Japan. *Quatern. Int.*, **120**, 51–64.
- Schellmann, G. and Radtke, U. (2004) A revised morpho- and chronostratigraphy of the Late and Middle Pleistocene coral reef terraces on Southern Barbados (West Indies). *Earth-Sci. Rev.*, 64, 157–187.
- Scholz, D., Mangini, A. and Meischner, D. (2007) 9. U-redistribution in fossil reef corals from Barbados, West Indies and sea-level reconstruction for MIS 6.5. In: *Developments in Quaternary Sciences* (Eds F. Sirocko, M. Claussen, M.F. Sánchez Goñi and T. Litt), *Elsevier*, 7, 119–139.
- Scoffin, T.P. and Stoddart, D.R. (1978) The nature and significance of microatolls. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci., 284, 99–122.
- Shen, C.-C., Siringan, F.P., Lin, K., Dai, C.-F. and Gong, S.-Y. (2010) Sea-level rise and coral-reef development of Northwestern Luzon since 9.9ka. *Palaeogeogr. Palaeoclimatol. Palaeoecol.*, 292, 465–473.
- Shen, C.-C., Wu, C.-C., Dai, C.-F. and Gong, S.-Y. (2018) Variable uplift rate through time: Holocene coral reef and neotectonics of Lutao, eastern Taiwan. J. Asian Earth Sci., 156, 201–206.
- Sheppard, C.R.C. (1982) Coral populations on reef slopes and their major controls. Mar. Ecol. Prog. Ser., 7, 83–115.
- Sherman, C.E., Glenn, C.R., Jones, A.T., Burnett, W.C. and Schwarcz, H.P. (1993) New evidence for two highstands of the sea during the last interglacial, oxygen isotope substage 5e. *Geology (Boulder)*, **21**, 1079–1082.
- Shinn, E. A. (1963) Spur and groove formation on the Florida Reef Tract. J. Sed. Res., 33, 291–303.
- Shinn, E.A. (1980) Geologic history of Grecian Rocks, Key Largo Coral Reef Marine Sanctuary. Bull. Mar. Sci., 30, 646–656.
- Shinn, E.A., Lidz, B.H., Kindinger, J.L., Hudson, J.H. and Halley, R.B. (1989) Reefs of Florida and the Dry Tortugas: A guide to the modern carbonate environments of the Florida Keys and the Dry Tortugas. U.S. Geological Survey, St. Petersburg, Florida, USA, 53 pp.
- Siringan, F.P., Shen, C.-C., Lin, K., Abigania, M.I.T. and Gong, S.-Y. (2016) Coral-based Holocene sea level of Paraoir, western Luzon, Philippines. J. Asian Earth Sci., 123, 61–66.
- Smithers, S.G. and Woodroffe, C.D. (2000) Microatolls as sea-level indicators on a mid-ocean atoll. Mar. Geol., 168, 61–78.

- Solihuddin, T., Collins, Lindsay.B., Blakeway, D. and O' Leary, M.J. (2015) Holocene coral reef growth and sea level in a macrotidal, high turbidity setting: Cockatoo Island, Kimberley Bioregion, northwest Australia. *Mar. Geol.*, **359**, 50–60.
- Solihuddin, T., O'Leary, M.J., Blakeway, D., Parnum, I., Kordi, M. and Collins, L.B. (2016) Holocene reef evolution in a macrotidal setting: Buccaneer Archipelago, Kimberley Bioregion, Northwest Australia. *Coral Reefs*, **35**, 783–794.
- Speed, R.C. and Cheng, H. (2004) Evolution of marine terraces and sea level in the last interglacial, Cave Hill, Barbados. *GSA Bull.*, 116, 219–232.
- Stafford-Smith, M.G. (1993) Sediment-rejection efficiency of 22 species of Australian scleractinian corals. Mar. Biol., 115, 229-243.
- Stanley, S.M. (1966) Paleoecology and diagenesis of Key Largo Limestone, Florida. Am. Assoc. Pet. Geol. Bull., 50, 1927–1947.
- Stathakopoulos, A. and Riegl, B.M. (2015) Accretion history of mid-Holocene coral reefs from the southeast Florida continental reef tract, USA. *Coral Reefs*, **34**, 173–187.
- Stathakopoulos, A., Riegl, B.M. and Toth, L.T. (2020) A revised Holocene coral sea-level database from the Florida reef tract, USA. *PeerJ*, 8, e8350.
- Stein, M., Wasserburg, G.J., Aharon, P., Chen, J.H., Zhu, Z.R., Bloom, A. and Chappell, J. (1993) TIMS U-series dating and stable isotopes of the last interglacial event in Papua New Guinea. *Geochim. Cosmochim. Acta*, 57, 2541–2554.
- Stirling, C.H., Esat, T.M., Lambeck, K. and McCulloch, M.T. (1998) Timing and duration of the Last Interglacial: evidence for a restricted interval of widespread coral reef growth. *Earth Planet. Sci. Lett.*, 160, 745–762.
- Stirling, C.H., Esat, T.M., Lambeck, K., McCulloch, M.T., Blake, S.G., Lee, D.-C. and Halliday, A.N. (2001) Orbital Forcing of the Marine Isotope Stage 9 Interglacial. *Science*, 291, 290–293.
- Stoddart, D.R. (1962) Three Caribbean atolls: Turneffe Islands, Lighthouse Reef and Glover's Reef, British Honduras. *Atoll Res. Bull.*, 87, 1–151.
- Storr, J.F. (1964) Ecology and Oceanography of the Coral-Reef Tract, Abaco Island, Bahamas. Geol. Soc. Am., New York, 98 pp.
- Suchanek, T.H. (1989) A guide to the identification of the common corals of St. Croix. In: *Terrestrial and marine geology of St. Croix, U.S. Virgin Islands* (Ed. D.K. Hubbard), *West Indies Laboratory*, 197–213.

- Sugihara, K., Nakamori, T., Iryu, Y., Sasaki, K. and Blanchon, P. (2003) Holocene sea-level change and tectonic uplift deduced from raised reef terraces, Kikai-jima, Ryukyu Islands, Japan. *Sed. Geol.*, 159, 5–25.
- Sugihara, K., Yamada, T. and Iryu, Y. (2006) Contrasts of coral zonation between Ishigaki Island (Japan, northwest Pacific) and Tahiti Island (French Polynesia, central Pacific) and its significance in Quaternary reef growth histories. In: Sea Level Changes: Records, Processes and Modelling - "SEALAIX'06" (Eds G. Camoin, A. Droxler, C. Fulthorpe and K. Miller), Association des Sedimentologistes Françiais, Paris, 179–180.
- Szabo, B.J., Ludwig, K.R., Muhs, D.R. and Simmons, K.R. (1994) Thorium-230 Ages of Corals and Duration of the Last Interglacial Sea-Level High Stand on Oahu, Hawaii. *Science*, 266, 93–96.
- Takahashi, T. and Koba, M. (1977) Emerged Holocene coral reefs around Kume Island, Ryukyus. Sci. Rep. Tohoku Univ. Ser. 7, 27, 81–94.
- Takahashi, T., Koba, M. and Nakamori, T. (1985) Coral reefs of the Ryukyu Islands: reef morphology and reef zonation. In: *Proceedings of the 5th International Coral Reef Symposium*, 3, 211–216.
- Taylor, J.D. (1968) Coral reef and associated invertebrate communities (mainly molluscan) around Mahe, Seychelles. *Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci.*, 254, 129–206.
- Thomas, A.L., Henderson, G.M., Deschamps, P., Yokoyama, Y., Mason, A.J., Bard, E., Hamelin, B., Durand, N. and Camoin, G.F. (2009) Penultimate Deglacial Sea-Level Timing from Uranium/Thorium Dating of Tahitian Corals. *Science*, **324**, 1186–1189.
- Thompson, W.G., Allen Curran, H., Wilson, M.A. and White, B. (2011) Sea-level oscillations during the last interglacial highstand recorded by Bahamas corals. *Nat. Geosci.*, **4**, 684–687.
- **Toscano, M.A.** (2016) Revised paleoenvironmental analysis of the Holocene portion of the Barbados sea-level record: Cobbler's Reef revisited. *Coral Reefs*, **35**, 641–653.
- Toscano, M.A. and Lundberg, J. (1998) Early Holocene sea-level record from submerged fossil reefs on the southeast Florida margin. *Geology*, 26, 255.
- Toscano, M.A. and Lundberg, J. (1999) Submerged Late Pleistocene reefs on the tectonically-stable S.E. Florida margin: high-precision geochronology, stratigraphy, resolution of Substage 5a sea-level elevation and orbital forcing. *Quatern. Sci. Rev.*, **18**, 753–767.

- Toscano, M.A., Macintyre, I.G. and Lundberg, J. (2012) Last interglacial reef limestones, northeastern St. Croix, US Virgin Islands—evidence of tectonic tilting and subsidence since MIS 5.5. *Coral Reefs*, **31**, 27–38.
- Toth, L.T., Cheng, H., Edwards, R.L., Ashe, E. and Richey, J.N. (2017) Millennial-scale variability in the local radiocarbon reservoir age of south Florida during the Holocene. *Quatern. Geochronol.*, 42, 130–143.
- Twiggs, E.J. and Collins, L.B. (2010) Development and demise of a fringing coral reef during Holocene environmental change, eastern Ningaloo Reef, Western Australia. *Mar. Geol.*, **275**, 20–36.
- van Woesik, R. and Done, T.J. (1997) Coral communities and reef growth in the southern Great Barrier Reef. Coral Reefs, 16, 103–115.
- Veeh, H.H., van de Graaff, W.J.E. and Denman, P.D. (1979) Uranium-series ages of coralline terrace deposits in Western Australia. J. Geol. Soc. Aust., 26, 285–292.
- Verheij, E. (1994) Nongeniculate Corallinaceae (Corallinales, Rhodophyta) from the Spermonde Archipelago, SW Sulawesi, Indonesia. *Blumea*, 38, 95–137.
- Verheij, E. and Erftemeijer, P.L.A. (1993) Distribution of seagrasses and associated macroalgae in South Sulawesi, Indonesia. *Blumea*, **38**, 45–64.
- Veron, J.E.N. (1986) Corals of Australia and the IndoPacific. Angus & Robertson, North Ryde, Australia, 644 pp.

Veron, J.E.N. (1990) Checklist of the hermatypic corals of Vanuatu. Pacific Sci., 44, 51–70.

- Veron, J.E.N. (1992) Hermatypic Corals of Japan. Aust. Inst. Mar. Sci., Townsville, 234 pp.
- Veron, J.E.N. (2000) Corals of the World, 3 volumes (463 p., 429 p. and 490 p.). Aust. Inst. Mar. Sci., Townsville.
- Veron, J.E.N. and Kelley, R. (1988) Species stability in reef corals of Papua New Guinea and the Indo Pacific. *Assoc. Aust. Palaeontol.*, Sydney [Australia], 69 pp.
- Veron, J.E.N. and Pichon, M. (1979) Scleractinia of eastern Australia, part III. Inst. Mar. Sci. Monogr. Ser., Canberra, 422 pp.

Veron, J.E.N. and Pichon, M. (1982) Scleractinia of eastern Australia, part IV. Inst. Mar. Sci. Monogr. Ser., Canberra, 195 pp.

- Veron, J.E.N., Pichon, M. and Wijsman-Best, M. (1977) Scleractinia of eastern Australia, part II. Inst. Mar. Sci. Monogr. Ser., Canberra, 233 pp.
- Veron, J.E.N. and Wallace, C.C. (1984) Scleractinia of eastern Australia, part V. Inst. Mar. Sci. Monogr. Ser., Canberra, 485 pp.
- Vézina, J. (1997) Stratigraphy and sedimentology of the Pleistocene Ironshore Formation at Rogers Wreck Point, Grand Cayman. M.Sc. Thesis, University of Alberta
- Vézina, J., Jones, B. and Ford, D. (1999) Sea-level highstands over the last 500,000 years; evidence from the Ironshore Formation on Grand Cayman, British West Indies. J. Sed. Res., 69, 317–327.
- Vieira, L.S., Bastos, A.C., Dechnik, B., Braga, J.C., Moura, R.L., D'Agostini, D.P., Moraes, F.C. and Webster, J.M. (This Volume) New insights on the Late Quaternary evolution of Abrolhos Reefs. eastern Brazilian Shelf.
- Vyverberg, K., Dechnik, B., Dutton, A., Webster, J.M., Zwartz, D. and Portell, R.W. (2018) Episodic reef growth in the granitic Seychelles during the Last Interglacial: Implications for polar ice sheet dynamics. *Mar. Geol.*, **399**, 170–187.
- Wallace, C.C. (1999) Staghorn Corals of the World. CSIRO Publishing, Australia, 421 pp.
- Webster, J.M., Braga, J.C., Clague, D.A., Gallup, C., Hein, J.R., Potts, D.C., Renema, W., Riding, R., Riker-Coleman, K., Silver, E. and Wallace, L.M. (2009) Coral reef evolution on rapidly subsiding margins. *Global Planet. Change*, **66**, 129–148.
- Webster, J.M., Braga, J.C., Humblet, M., Potts, D.C., Iryu, Y., Yokoyama, Y., Fujita, K., Bourillot, R., Esat, T.M., Fallon, S., Thompson, W.G., Thomas, A.L., Kan, H., McGregor, H.V., Hinestrosa, G., Obrochta, S.P. and Lougheed, B.C. (2018) Response of the Great Barrier Reef to sea-level and environmental changes over the past 30,000 years. *Nat. Geosci.*, 11, 426–432.
- Webster, J.M., Clague, D.A. and Braga, J.C. (2007) Support for the Giant Wave Hypothesis: evidence from submerged terraces off Lanai, Hawaii. *Int. J. Earth Sci.*, 96, 517–524.
- Webster, J.M., Clague, D.A., Braga, J.C., Spalding, H., Renema, W., Kelley, C., Applegate, B., Smith, J.R., Paull, C.K., Moore, J.G. and Potts, D.C. (2006) Drowned coralline algal dominated deposits off Lanai, Hawaii; carbonate accretion and vertical tectonics over the last 30 ka. *Mar. Geol.*, 225, 223–246.
- Webster, J.M., Clague, D.A., Riker-Coleman, K., Gallup, C., Braga, J.C., Potts, D.C., Moore, J.G., Winterer, E.L. and Paull, C.K. (2004b) Drowning of the 150 m reef off Hawaii: A casualty of global meltwater pulse 1A? *Geology*, **32**, 249–252.

- Webster, J.M. and Davies, P.J. (2003) Coral variation in two deep drill cores: significance for the Pleistocene development of the Great Barrier Reef. Sed. Geol., 159, 61–80.
- Webster, J.M., Davies, P.J. and Konishi, K. (1998) Model of fringing reef development in response to progressive sea level fall over the last 7000 years (Kikai-jima, Ryukyu Islands, Japan). *Coral Reefs*, **17**, 289–308.
- Webster, J.M., Dechnik, B., Sanborn, K., Yokoyama, Y., Braga, J.C., Renema, W., Humblet, M., Beaman, R.J., Gallagher, S.J., O'Leary, M. and Paumard, V. (This Volume) Coral reef development and sea-level changes over the past 50,000 years: new evidence from the northwest shelf of Australia.
- Webster, J.M., Wallace, L.M., Silver, E., Potts, D.C., Braga, J.C., Renema, W., Riker-Coleman, K. and Gallup, C. (2004) Coralgal composition of drowned carbonate platforms in the Huon Gulf, Papua New Guinea; implications for lowstand reef development and drowning. *Mar. Geol.*, 204, 59–89.
- Wells, J.W. (1954) Recent corals of the Marshall Islands. U.S. Geol. Surv. Prof. Pap. 200-I, 385-486.
- Yamano, H., Abe, O., Kitagawa, H., Niu, E. and Nakamura, T. (2001a) Coral Reef Evolution at the Leeward Side of Ishigaki Island, Southwest Japan. *Radiocarbon*, 43, 899–908.
- Yamano, H., Abe, O., Matsumoto, E., Kayanne, H., Yonekura, N. and Blanchon, P. (2003) Influence of wave energy on Holocene coral reef development: an example from Ishigaki Island, Ryukyu Islands, Japan. Sed. Geol., 159, 27–41.
- Yamano, H., Kayanne, H. and Yonekura, N. (2001b) Anatomy of a Modern Coral Reef Flat: A Recorder of Storms and Uplift in the Late Holocene. J. Sed. Res., 71, 295–304.
- Yamano, H., Kayanne, H., Yonekura, N. and Kudo, K. (2000) 21-Year Changes of Backreef Coral Distribution: Causes and Significance. J. Coastal Res., 16, 99–110.
- Yamazato, K. (1972) Bathymetric distribution of corals in the Ryukyu Islands. In: *Proceedings of the 1st International Symposium on Corals* and Coral Reefs (Eds C. Mukundan and C.S. Gopinadha Pillai), *Marine Biological Association of India*, Mandapam Camp, India, 121–133.
- Yokoyama, Y., Esat, T.M., Thompson, W.G., Thomas, A.L., Webster, J.M., Miyairi, Y., Sawada, C., Aze, T., Matsuzaki, H., Okuno, J., Fallon, S., Braga, J.C., Humblet, M., Iryu, Y., Potts, D.C., Fujita, K., Suzuki, A. and Kan, H. (2018) Rapid glaciation and a two-step sea level plunge into the Last Glacial Maximum. *Nature*, 559, 603–607.

- Yonekura, N., Kayanne, H., Matsumoto, E., Ishii, T., Matsushima, Y., Hori, N. and Nakai, T. (1994) Geomorphic Development of Modern Fringing Reefs of Yoron Island, Ryukyu Arc, Japan. *Quatern. Res. Daiyonki-Kenkyu*, **33**, 67–79.
- Zhu, Z.R., Wyrwoll, K.-H., Collins, L.B., Chen, J.H., Wasserburg, G.J. and Eisenhauer, A. (1993) High-precision U-series dating of Last Interglacial events by mass spectrometry: Houtman Abrolhos Islands, western Australia. *Earth Planet. Sci. Lett.*, **118**, 281–293.
- Zimmer, B., Precht, W., Hickerson, E. and Sinclair, J. (2006) Discovery of Acropora palmata at the Flower Garden Banks National Marine Sanctuary, northwestern Gulf of Mexico. *Coral Reefs*, 25, 192.